

October 8, 2019

Mr. Scott Gestring DSMOA Project Officer Montana Department of Environmental Quality LUST/Brownfields Program 1225 Cedar Street Helena, MT 59601

RE: Final Groundwater Data Package Submittal Petroleum Release at Missile Alert Facility (MAF) F-1 (PL507) Augusta, Lewis & Clark County, MT Facility ID #50-09030 Release #1332

Dear Mr. Gestring:

EMR Environmental conducted remedial activities at MAF F-1 (PL507) located near Augusta, Lewis and Clark County, Montana, Facility ID #50-09030 Release #1332, between June 8, 2015 and August 20, 2015. The remedial activities were completed to accelerate the remedial process at the site. The corrective actions included the installation of ten remediation wells at the site (Figure 1), extracting groundwater from the wells and treating the water with granular activated carbon. The treated groundwater was temporarily stored in a plastic tank and RegenOx[®] Part A was added. The solution was then injected into each remediation well to increase the dissolved oxygen levels in the groundwater within the contaminant plume. Upon completion of the initial injections (June 9 to June 15, 2015), ORC Advanced[®] socks were placed in nine of the remediation wells and seven of the existing monitoring wells. The ORC socks were removed from the wells on April 10, 2016 and discarded. Between July 7, 2015 and July 9, 2015, a solution of Oil Spill Eater (OSEII) and surface water from the nearby Sun River was pressure injected into each remediation well. No groundwater extraction was completed prior to the OSEII injections. Remediation well RW-4 was destroyed on July 15, 2015 while excavating to repair a communication line that was damaged during the installation of RW-4. Because RW-4 was a dry well, a replacement well was not installed.

EMR has since completed 6 additional injection events at MAF F-1. Injections began August 13, 2015 and ended October 27, 2015. Each event was completed over a period of two (2) days. The events were completed using a mixture of OSEII® and surface water for each well. Surface water within the 400-gallon plastic tank was aerated prior to the addition of OSEII®. Each well was filled to near the top of the casing with the solution using a sump pump and discharge tubing.

On April 17, 2016 EMR conducted the third post-remediation groundwater sampling event at MAF F-1 to evaluate the effectiveness of RegenOx and OSEII applications conducted between June and October 2015. Analytical results from groundwater samples collected indicate that VPH and EPH compounds were present at concentrations exceeding the DEQ Tier 1 Risk Based Screening Levels (Appendix A). Additionally, free product was found in MW-12.

Based on the significant contaminant concentrations increases in MW-12, EMR conducted an additional soil investigation in the area near MW-12 and MW-9 to determine if subsurface soil contamination was missed during the RI phase. EMR advanced four (4) soil borings near MW-12 and two (2) soil borings near MW-9. Soil borings were advanced using an air rotary drill rig. EMR field screened all the soil samples collected from each boring for odors, visible staining and headspace testing with a MiniRae 2000 Photo Ionization Detector (PID). Soil sampling and field screening were completed at 5-feet intervals from 10 feet below ground surface (bgs) to the termination of the soil borings (38-40 feet bgs). A handheld container was used

to collect soil samples lifted from the borehole via injected air. Soil samples were immediately transferred from the container to sealable plastic bags for PID field screening. Soil samples were collected at each boring from the interval with the most elevated PID reading and/or evidence of contamination based on visual or olfactory indications and submitted for laboratory analysis. If there was no indication of contamination, then the samples from the soil/water interface were submitted for laboratory analysis. All soil samples were submitted to Eurofins Analytical and analyzed for VPH and EPH using the 2004 Montana Modified Massachusetts Method. Soil analytical results indicated no exceedances of the Tier 1 RBSLs.

On October 23, 2017 and October 24, 2017, EMR completed remedial activities along with groundwater monitoring well installation and sampling. EMR completed a groundwater extraction event at MW-12. Groundwater monitoring wells MW-14 and MW-15 were installed to assess contamination down gradient and cross-gradient from MW-12. EMR collected groundwater samples from MW-15 and MW-12 (post extraction event). MW-14 was dry.

Groundwater and Free Product Extraction

To mitigate the residual free product observed in MW-12, EMR subcontracted Boland Construction to complete a high efficiency vacuum extraction (HVE) event to remove free product, and impacted groundwater from the well. On October 23, 2017, a vacuum trailer unit equipped with 3000 CFM was utilized for the extraction event. To conduct liquid/vapor extraction, a 1-inch diameter PVC pipe was lowered into MW-12 and set just above the water table. A Fernco fitting was installed to seal the wells to allow for vapor extraction simultaneously with liquid recovery. A clear view port was equipped to the extraction hose to allow real-time viewing of the extracted liquids. The extraction continued for approximately 3 hours and no noticeable free product was observed in the extraction hose after the first two minutes of the HVE event. The extracted liquids (300 gallons of petroleum contaminated groundwater) were held in a storage tank for later disposal. MW-12 was gauged on October 24, 2017 and no free product was detected with the interface probe or observed in a bailer.

On December 12, 2017, Emerald Services pumped the water from the storage tank and transported the waste to their disposal facility in Great Falls, Montana.

Monitoring Well Installation

New monitoring wells MW-14 and MW-15 were installed on October 24, 2017 to assess groundwater conditions down gradient and cross gradient from MW-12. The wells were constructed using hollow stem augers equipped with 2-ft split spoon samplers. Well construction consisted of 20 feet of two-inch diameter slotted PVC screen (0.01-inch) from 15 to 35 feet bgs. Solid PVC riser was extended to just below land surface. Sand was placed to two feet bgs (1 foot above the wells screen) and a one-foot thick bentonite seal was placed above the sand and hydrated. The upper 1 foot of each borehole was completed with concrete pavement. The wells were secured with 8-inch diameter steel flush manways sealed in the new concrete pavement.

EMR field screened all the soil samples collected from each boring for odors, visible staining and headspace testing with a MiniRae 2000 Photo Ionization Detector (PID). Soil sampling and field screening were completed where possible. Below 15 feet bgs, the soil turns to sandstone, and sample collection was limited. Soil samples were collected at each boring from the interval with the most elevated PID reading and/or the soil/water interface and submitted for laboratory analysis. All soil samples were submitted to Eurofins Analytical and analyzed for VPH and EPH using the 2016 Montana Method. Soil analytical results indicated no exceedances of the Tier 1 RBSLs.

On May 21 and May 22, 2018, EMR conducted a groundwater sampling event at MAF F-1 to evaluate the contaminant plume at the site. Analytical results from groundwater samples collected indicate that VPH and EPH compounds are present at concentrations exceeding the 2018 DEQ Tier 1 Risk Based Screening Levels (Appendix A).

Most Recent Groundwater Sampling Activities

On May 15, 2019, EMR conducted a groundwater sampling event at MAF F-1 to evaluate the contaminant plume at the site. Analytical results from groundwater samples collected indicate that VPH and EPH compounds are present at concentrations exceeding the 2018 DEQ Tier 1 Risk Based Screening Levels (Appendix A).

Upon arrival at the site, EMR collected groundwater level measurements (Table 1). Groundwater flow is generally to the SSE (Figure 2). Groundwater depths and the presence of groundwater in monitoring wells at the site is highly variable to significant subsurface disturbances during the installation of the MAF. The Air Force completed a simulated radius of influence study regarding the previous remedial injections. They concluded that the radius of influence for the injections was <10 feet and thus the water levels in MW-13 have not been impacted by previous injection events.

Low-flow sampling equipment included a bladder pump, a Horiba U-52 field water quality parameter measurement instrument with flow cell, and a Solinst water level meter. The Horiba U-52 was used to measure pH, oxygen reduction potential (ORP), dissolved oxygen (DO), conductivity, temperature, and turbidity (Table 2). The Solinst water level meter was used to measure water depths in each well. The bladder pump was lowered down the well to a depth below the static water level and in the upper fourth of the screened section and connected to disposable silicone tubing. A section of 0.25-inch LDPE tubing connected to the flow thru cell and the bladder pump. Water pumped from the wells was collected in 5gallon buckets and then disposed of on the ground near the well at the completion of sampling in accordance with the DEQ Flowchart for Disposal of Hydrocarbon-Contaminated Wastewater (DEQ, 2015). Collection of groundwater samples occurred after purging and groundwater sampling parameters had stabilized in each well. The well was considered stabilized after a minimum of one well volume was purged and two consecutive readings of less than +/- 10% variance were recorded for temperature, conductivity, and consecutive pH readings were within 0.1 pH units. Groundwater sampling logs can be found in Appendix B. Water removed from the wells was discharged to the ground near the well in accordance with the DEQ Flow Chart for Discharge of Hydrocarbon-Contaminated Wastewater. Groundwater samples were collected and handled in accordance with the DEQ LUST/Brownfields sample collection, preservation, handling and shipping requirements. The samples were collected from MW-1, MW-2, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, and MW-15. No free product was observed in MW-12.

May 2019 Groundwater Analytical Data

Groundwater samples and associated field QA/QC samples were submitted to Eurofins and analyzed for VPH and EPH using the 2018 Montana Modified Methods. This section will present the analytical data of all contaminants of concern from the May 2019 sampling event and provide a comparison to analytical data from previous sampling events. The historical VPH and EPH data is provide in Table 3. The VPH and EPH analytical data for May 2019 is depicted on Figures 3 and 4. Laboratory reports are provided in Appendix C.

<u>Benzene</u>

Benzene was detected above the 2018 DEQ Tier 1 Risk Based Screening Level (RBSL) of 5 micrograms per liter (μ g/L) in monitoring wells MW-1 (1170 μ g/L), MW-2 (1660 μ g/L), MW-8 (21.7 μ g/L), MW-9 (3370 μ g/L), MW-10 (475 μ g/L), MW-12 (459 μ g/L), and MW-14 (13.1 μ g/L). Benzene was not detected in downgradient wells MW-11, MW-13 or MW-15, nor in cross gradient wells MW-4, MW-6, and MW-7. Benzene was also non-detect in source area well MW-5. Detected benzene concentrations ranged from 13.1 μ g/L (MW-14) to 3370 μ g/L (MW-9). Benzene concentrations decreased in monitoring wells MW-1, MW-5, MW-10, MW-11, MW-14 and MW-15 and increased in MW-2, MW-8, MW-9, and MW-12 in comparison to 2018 data. While concentrations in MW-9 and MW-12 increased from 2018, they decreased from pre-remediation concentrations.

<u>Toluene</u>

Toluene was not detected above the 2018 DEQ Tier 1 RBSL of 1000 micrograms per liter (μ g/L) in any of the monitoring wells sampled. Detected toluene concentrations ranged from 3 μ g/L (MW-5) to 973 μ g/L (MW-9). Toluene concentrations decreased in monitoring wells MW-5, MW-10, and MW-12 in comparison to the May 2018 data. Concentrations in MW-1, MW-2, and MW-9 increased from 2018, however, MW-1 and MW-9 decreased from pre-remediation concentrations.

Ethylbenzene

Ethylbenzene was detected above the 2018 DEQ Tier 1 RBSL of 700 micrograms per liter (μ g/L) in monitoring wells MW-1 (1440 μ g/L), MW-9 (1700 μ g/L), and MW-12 (801 μ g/L). Ethylbenzene was not detected in MW-4, MW-6, MW-7, MW-11 or MW-13. Detected ethylbenzene concentrations ranged from 3.8 μ g/L (MW-8) to 1700 μ g/L (MW-9). Ethylbenzene concentrations decreased in monitoring wells MW-5, MW-10, MW-12, MW-14, and MW-15, while increases were noted in MW-1, MW-2, and MW-9 in comparison to the May 2018 data. While concentrations increased from 2018, they decreased from pre-remediation concentrations in monitoring wells MW-1 and MW-12.

<u>Xylenes</u>

Xylenes were not detected above the 2018 DEQ Tier 1 RBSL of 10000 micrograms per liter (μ g/L) in any monitoring wells. Xylenes were not detected in downgradient well MW-13, or in cross gradient wells MW-4, MW-6, MW-7, MW-8 and MW-11.

Naphthalene

Naphthalene was detected above the 2018 DEQ Tier 1 RBSL of 100 micrograms per liter (μ g/L) in monitoring wells MW-1 (619 μ g/L), MW-2 (226 μ g/L), MW-9 (444 μ g/L), MW-10 (160 μ g/L), and MW-12 (463 μ g/L). Naphthalene was not detected in monitoring wells MW-4, MW-5 MW-6, MW-7, MW-11, MW-13, and MW-14. Detected naphthalene concentrations ranged from 3.25 μ g/L (MW-8) to 619 μ g/L (MW-1). Naphthalene concentrations decreased in monitoring wells MW-5, MW-10, MW-11, MW-12, and MW-15, while monitoring wells MW-1, MW-2, and MW-9 showed increases in comparison to 2018 concentrations.

Methyl Tert-Butyl Ether (MTBE)

MTBE was not detected above the 2018 DEQ Tier 1 RBSL of 30 micrograms per liter (μ g/L) in any monitoring wells. The only detection of MTBE was in MW-6 at 6.99 μ g/L.

C5-C8 Aliphatic Hydrocarbons

C5-C8 Aliphatic Hydrocarbons were detected above the 2018 DEQ Tier 1 RBSL of 650 micrograms per liter (μ g/L) in monitoring wells MW-1(7990 μ g/L), MW-2 (2780 μ g/L), MW-9 (12400 μ g/L), MW-10 (1490 μ g/L), MW-12 (4780 μ g/L), and MW-15 (1220 μ g/L). C5-C8 Aliphatics were not detected monitoring wells MW-4, MW-6, MW-7, MW-11, and MW-13. Detected C5-C8 Aliphatic concentrations ranged from 117 μ g/L (MW-5) to 12400 μ g/L (MW-9). C5-C8 Aliphatic Hydrocarbon concentrations decreased in MW-, MW-12, and MW-14.

C9-C12 Aliphatic Hydrocarbons

C9-C12 Aliphatic Hydrocarbons were detected above the 2018 DEQ Tier 1 RBSL of 1400 micrograms per liter (μ g/L) in monitoring wells MW-1 (10100 μ g/L), MW-2 (3030 μ g/L), MW-9 (8450 μ g/L), and MW-12 (6090 μ g/L). C9-C12 Aliphatics were not detected in monitoring wells MW-4, MW-6, MW-7, MW-8, MW-11 and MW-13. Detected C9-C12 Aliphatic concentrations ranged from 57 μ g/L (MW-5) to 10100 μ g/L (MW-1). C5-C8 Aliphatic Hydrocarbon concentrations decreased in all monitoring wells with the exception of MW-1, MW-2, and MW-9.

C9-C10 Aromatic Hydrocarbons

C9-C10 Aromatic Hydrocarbons were detected above the 2018 DEQ Tier 1 RBSL of 1100 micrograms per liter (μ g/L) in monitoring wells MW-1 (7700 μ g/L), MW-2 (2010 μ g/L), MW-9 (5650 μ g/L), MW-10 (1480 μ g/L), MW-12 (8050 μ g/L), and MW-15 (1750 μ g/L). C9-C10 Aromatic Hydrocarbons were not detected

in monitoring wells MW-4, MW-6, MW-7, MW-11, and MW-13. Detected C9-C10 Aromatic Hydrocarbon concentrations ranged from 76 μ g/L (MW-5) to 8050 μ g/L (MW-12). C9-C10 Aromatic concentrations increased in monitoring wells MW-1, MW-2, and MW-9 when compared to May 2018 data. While in comparison to May 2018 data MW-9 shows an increase in concentration, is shows a decrease in concentration when compared to pre-remediation data.

EPH Screen and Fractionation Data

TEH screening concentrations exceeded 1000 μ g/L in monitoring wells MW-1, MW-2, MW-9, MW-10, MW-12, and MW-15. For wells with an EPH screening level above 1000 μ g/L, fractionation of the data was completed. The results of sample fractionations indicate exceedances of the 2018 Tier 1 RBSLs only in monitoring wells MW-1 and MW-12. As with previous data, EMR cannot provide an explanation for high concentrations of C9-C18 Aliphatics and C11 to C22 Aromatics in MW-12, when they are not detected or below the Tier 1 RBSLs in upgradient monitoring wells MW-2, MW-5, MW-8, MW-9, and MW-10.

Data Verification and Validation

The analysis of groundwater samples collected during this investigation followed the proposed methodologies presented in the *Final Corrective Action and Remedial Alternative Analysis for Missile Alert Facility (MAF) F-1 (PL507) Augusta, Lewis & Clark County, Montana*, dated January 8, 2015.

All groundwater samples were analyzed in various combinations for the following: •VPH and EPH by Montana Modified Method (2018)

All the laboratory data generated as part of the investigation conducted at MAF F-1 was validated by the project chemist. Internal laboratory quality assurance (QA)/quality control (QC) samples, including a trip blank and field duplicate were performed to document laboratory QA/QC.

The data validation report noted that the Chain of Custody record(s) from the field to the laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. All analyses are accounted for in the data report. There is no indication of any issues associated with the sample receipt, and/or condition of the samples, that would affect the quality of the data.

None of the quality control excursions encountered during the data assessment process of this analytical data set resulted in rejected data. In terms of data quality, all data met requested validation DQOs except as noted and is therefore considered compliant and adequate for use. Information regarding the precision, accuracy, representativeness and completeness is provided in the Validation Report (Appendix D).

Data Evaluation

Overall, remedial activities completed in 2015 and 2017 (MW-12) have resulted in decreases in contaminant concentrations in all monitoring wells. In MW-5 contaminant concentrations for all compounds have been reduced by 91 to 100%, with all contaminants below the RBSLs. The contaminant reductions in this well likely correlate to successful injection of in-situ enhanced bioremediation products in RW-1 in comparison to the other remediation wells.

MW-1

Decrease/Increase

	<u>Mar-14</u>	<u>Apr-16</u>	<u>Apr-17</u>	<u>May-18</u>	<u>May-19</u>	
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics Benzene	7850 1140 10600 2410	3630 888 4240 289	15600 26500 6380 1860	7720 7600 7260 1420	7990 10100 7700 1170	+1.7% +786% -27% -51%
Ethylbenzene Toluene Xylenes m,p Xylenes, o MTBE	2030 1210 10000 2900 184	175 147 3230 1380 67	2140 1340 9430 3950 192	1340 667 7490 2490 <14	1440 813 6900 1880 <4	-29% -33% (Below RBSL) -31% (Below RBSL) -35% (Below RBSL) -100% (Below RBSL)
Naphthalene	734	246	1050	596	619	-16%
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics Benzene Ethylbenzene Toluene Xylenes m,p Xylenes, o MTBE Naphthalene	MW-2 3200 1460 2810 3420 370 811 2120 590 163 242	2670 435 1040 1370 293 222 876 170 80 73	6450 5150 1230 2500 838 467 1800 439 26 249	3280 1790 1630 1610 520 334 1490 292 71 174	2780 3030 2010 1660 664 518 2250 562 <4 226	-13% +107% -28 % -51% +79% (Below RBSL) -36% (Below RBSL) +6% (Below RBSL) -5% (Below RBSL) -100% (Below RBSL) -7%
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics Benzene Ethylbenzene Toluene Xylenes m,p Xylenes, o MTBE Naphthalene	MW-5 13400 11000 14100 428 1070 870 6190 1820 ND 716	1150 375 1560 133 119 202 698 232 ND 82	572 568 1540 18 28 46 118 62 ND 24	370 269 1310 30 32 58 173 56 ND 22	117 57 76 <2 4.4 3 15 5 ND <3	-99% (Below RBSL) -100% (Below RBSL)
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics Benzene Ethylbenzene Toluene Xylenes m,p Xylenes, o MTBE Naphthalene	MW-9 7770 7240 11500 5490 1650 2590 7460 2520 341 1080	13800 1420 7480 4910 1940 2100 7960 2590 420 612	20900 16000 3510 4330 1810 1170 5740 1990 612 641	3560 3620 3610 1170 642 243 1930 606 60 293	12400 8450 5650 3370 1700 973 5830 1660 <10 444	+60% +17% -51% -39% +3% -62% (Below RBSL) -22% (Below RBSL) -34% (Below RBSL) -100% (Below RBSL) -59%

	MW-1()				Decrea	se/Increase
	<u>Mar-14</u>	<u>Apr-16</u>	<u>Apr-17</u>	<u>May-18</u>	<u>May-19</u>		
C5-C8 Aliphatics	4820	457	1960	1360	1490	-69%	
C9-C12 Aliphatics	4730	117	1540	1330	1130	-76%	(Below RBSL)
C9-C10 Aromatics	6920	370	644	1540	1480	-79%	
Benzene	2800	272	494	799	475	-83%	
Ethylbenzene	997	72	262	368	242	-75%	(Below RBSL)
Toluene	100	10	21	22	16.2	-84%	(Below RBSL)
Xylenes m,p	2140	104	252	458	367	-83%	(Below RBSL)
Xylenes, o	123	6	18	38	49.6	-60%	(Below RBSL)
MTBE	71	11	23	< 0.2	<2	-100%	(Below RBSL)
Naphthalene	847	43	162	249	160	-81%	· · · · · · · · · · · · · · · · · · ·
-							
	MW-12	2					
C5-C8 Aliphatics	3500	115,000	3560	5160	4780	+37	
C9-C12 Aliphatics	2250	1,230,000	8170	16600	6090	+171%	
C9-C10 Aromatics	4860	3,400,000	22,700	19900	8050	+66%	
Benzene	1130	1800	430	279	459	-59%	
Ethylbenzene	1150	4480	1770	983	801	-30%	
Toluene	121	1200	89	111	68.3	-44%	(Below RBSL)
Xylenes m,p	1760	28,700	7990	4250	1920	+9%	(Below RBSL)
Xylenes, o	401	10,700	2000	1220	334	-17%	(Below RBSL)
MTBE	57	2000	<29	<29	<2	-100%	(Below RBSL)
Naphthalene	600	250,000	1220	1610	463	-23%	· / /
C9-C18 Aliphatics	441	127,000	59,200	9600	5600	+1170%	0
C11-C22 Aromatics	157	16,800	<680	4210	1800	+1046%	

Overall Decreases/Increases in COCs – 2014 to 2019 (all concentrations in µg/L)

Note: Exceedances of the 2018 Tier 1 RBSLs are shown in **bold**.

Currently, EMR does not have an explanation for the past significant increases in contaminant concentrations reported in MW-12. MW-10, located upgradient of MW-12 and between wells MW-12 and MW-9, has historically had much lower contaminant concentrations than MW-12 and MW-9. Groundwater collected from MW-14 and MW-15 reported VPH concentrations significantly lower than MW-12, but exceeding the 2018 Tier 1 RBSLs, indicating that the contaminant plume has not migrated much beyond MW-12. The plume is still delineated and isolated mainly to the entrance road area that was excavated to depths of up to 60 feet during the installation of the MAF; as monitoring wells MW-4, MW-5, MW-6, MW-7, MW-11 and MW-13 are not impacted.

Discussion and Recommendations

The May 2019 groundwater sampling event was the final sampling event under the current contract. Due to budget and time constraints of our AFCEC contract, the performance objective of Site Closeout will not be met. No additional activities will be conducted at TU507 (MAF F-1) during the existing contract that ends in September 2020.

If you have questions or comments, please contact me at (913) 232-7788, ext. 101.

Sincerely,

J. A. Humenik

Jeffrey A. Humenik, PG Certified Professional Geologist #9145

cc: Robert Brown - 341 CES/CEAN, 39 78th Street North, Malmstrom AFB, MT 59402-7536 Ernesto Perez – COR

TABLES

6418 College Blvd ▼ Overland Park, KS 66211 ▼ (913) 232-7788 ▼ www.emrenv.com

Well ID	Date Sampled	Well Depth (ft bgs)	Screened Interval (ft bgs)	TOC Elevation (feet above mean sea level)	Depth to Water (feet below TOC	Groundwater Elevation (feet above mean sea level)
	12/2012				35.19	4357.49
	03/2014				33.84	4358.84
	08/25/15				34.40	4358.28
MW-1	11/10/15	49.20	20.20.40.20	4202.69	35.50	4357.18
IVI V V - 1	04/17/16	49.20	29.20-49.20	4392.68	37.60	4355.08
	04/24/17				35.78	4356.90
	5/21/18				27.33	4365.35
	5/15/19				30.61	4362.07
	12/2012				41.73	4348.39
	03/2014				33.46	4356.66
	08/25/15				33.78	4356.34
MW-2	11/10/15	50.7	20.70-50.70	4390.12	29.00	4361.12
10100-2	04/17/16	50.7			36.00	4354.12
	04/24/17				34.95	4355.17
	5/21/18				26.95	4363.17
	5/15/19				29.11	4361.01
MW-3	12/2012	50	30-50	4393.35	33.66	4359.69
	01/2013				33.80	4356.80
	03/2014			-	34.26	4356.34
MW-4	04/24/17	45.50	25.50-45.50	4390.60	34.32	4356.28
	5/21/18			-	27.46	4363.14
	5/15/19				28.13	4362.47
	01/2013				32.45	4359.86
	03/2014				33.41	4358.90
	08/25/15				31.75	4360.56
MW-5	11/10/15	45 70	25 70 45 70	1202.24	32.15	4360.16
C-VVIVI	04/17/16	45.70	25.70-45.70	4392.31	35.17	4357.10
	04/24/17				31.69	4360.62
	5/21/18				27.78	4364.53
	5/15/2019				29.01	4363.30
Notes:	Ft	feet	<u> </u>	1		1

Table 1: Groundwater Levels and Elevations MAF F-1

> Below ground surface bgs –

тос

Top of casing

Table 1: Groundwater Levels and Elevations MAF F-1 Continued

Well ID	Date Sampled	Well Depth (ft bgs)	Screened Interval (ft bgs)	TOC Elevation (feet above mean sea level)	Depth to Water (feet below TOC	Groundwater Elevation (feet above mean sea level)
	01/2013				33.56	4352.04
	03/2014				32.22	4353.38
MW-6	04/24/17	45.20	25.20-45.20	4385.60	35.15	4350.45
	5/21/18				28.61	4356.99
	5/15/19				27.80	4357.80
	01/2013				Dry	Dry
	03/2014	45.20			41.29	4343.09
MW-7	04/24/17		25.20-45.20	4388.67	40.72	4343.66
	5/21/18				34.20	4354.47
	5/15/19				39.61	4349.06
	01/2013				Dry	Dry
	03/2014				38.37	4352.11
MW-8	3 04/24/17	45.55	25.55-45.55	4386.84	36.51	4353.97
	5/21/18				30.85	4355.99
	5/15/19				34.90	4351.94
	01/2013				39.45	4342.40
	03/2014				39.96	4341.89
	08/25/15				39.71	4342.14
MW-9	11/10/15	45.00	25.00-45.00	4381.85	39.90	4341.95
	04/17/16				40.50	4341.35
	04/24/17				40.04	4341.81
	5/21/18				30.71	4351.14
	5/15/19				34.55	4347.30
	01/2013				39.32	4338.14
	03/2014]			35.78	4341.68
	08/25/15	1			36.00	4341.46
MW-10	11/10/15	49.20	29.20-49.20	4377.46	36.55	4340.91
	04/17/16	49.20			38.20	4339.26
	04/24/17	1			36.91	4340.55
	5/21/18]			29.42	4348.04
	5/15/19]			31.91	4345.55

Notes:

Ft

bgs – Below ground surface

feet

TOC Top of casing

Well ID	Date Sampled	Well Depth (ft bgs)	Screened Interval (ft bgs)	TOC Elevation (feet above mean sea level)	Depth to Water (feet below TOC	Groundwater Elevation (feet above mean sea level)
	03/2013				29.66	4342.04
	03/2014				30.11	4342.09
	08/25/15				30.00	4341.70
MW-11	11/10/15	44.50	24.50-44.50	4371.70	30.50	4341.20
WIVY-11	04/17/16	44.50	24.50-44.50	4371.70	30.80	4340.90
	04/24/17				30.90	4340.80
	5/21/18				25.35	4346.35
	5/15/19				26.87	4344.83
	03/2013				27.44	4342.09
	03/2014				28.01	4341.52
	08/25/15				27.85	4341.68
	11/10/15				28.35	4341.18
MW-12	04/17/16	40.00	20.00-40.00	4369.53	DTP 29.51 DTW 29.52 0.01' Free Product	4340.01
WIVV-12	04/24/17	40.00		4309.55	DTP 29.70 Measured DTW 29.78 Corrected DTW 29.72 0.08' Free Product	4339.81
	10/24/2017				28.90	4340.63
	5/21/18				23.61	4345.92
	5/15/19				24.85	4344.68
	03/2013				18.92	4344.05
	03/2014				19.96	4343.01
	08/25/15				19.81	4343.16
MW-13	11/10/15	34.00	14.00-34.00	4362.97	20.20	4342.77
	04/17/16		11.00 01.00	1002.01	21.60	4341.37
	04/24/17				20.18	4342.79
	5/21/18				13.47	4349.5
	5/15/19				14.31	4348.66
	10/24/17				Dry	Dry
MW-14	5/21/18	35.00	15-35	4370.09	24.02	4346.07
	5/15/19				25.35	4344.74
	10/24/17				33.97	4332.61
MW-15	5/21/18	35	15-35	4366.58	20.79	4345.79
	5/15/19				21.95	4344.63

Ft – feet BGS – below ground surface TOC – Top of casing 4/24/17 groundwater elevation for MW-12 was derived using the depth to water value corrected for depression of the water table due to the presence of free product.

Well ID	Date Sampled	рН	Temp (°C)	Sp. Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTUs)	ORP (mV)
	03/2014	7.03	13.85	1.53	1.07	203	-77
	08/25/15	7.47	11.93	1.52	2.68	112	-54
	11/10/15	6.83	8.92	2.27	NA	230	-64
MW-1	04/17/16	6.90	13.60	1.85	0	180	21
	04/24/17	7.0	12.97	1.82	0	145	31
	5/21/18	7.0	12.76	1.55	0	76	44
	5/15/19	7.4	12.61	1.51	2.86	84	41
	03/2014	7.19	12.20	1.73	0.97	61.3	-48
	08/25/15	7.50	11.20	1.81	3.00	38	-65
	11/10/15	7.10	8.38	1.96	NA	41	-30
MW-2	04/17/16	7.80	15.30	1.14	1.0	172	-26
	04/24/17	8.09	12.66	3.18	0.40	548	-189
	5/21/18	8.29	12.76	3.38	0.43	95	-102
	5/15/19	8.09	12.56	3.12	4.50	107	-102
	04/23/17	7.04	10.66	1.01	2.38	148	52
MW-4	5/21/18	7.94	11.66	1.12	2.08	48	62
	5/15/19	7.91	11.60	1.12	7.02	30	56
	03/2014	7.43	12.97	1.03	3.94	512	-132
	08/25/15	7.81	12.97	2.23	0	1000	-122
	11/10/15	7.25	10.00	2.00	NA	342	-90
MW-5	04/17/16	7.00	15.00	0.002	1.2	152	26
	04/24/17	6.12	12.85	1.14	0.48	703	-111
	5/21/18	7.12	12.65	1.34	0.28	30	-101
	5/15/19	7.02	12.53	1.48	3.58	26	-94
	03/2014	7.88	12.23	1.31	1.26	24.2	-162
	04/24/17	8.78	10.23	0.993	1.20	48.9	-29
MW-6	5/21/18	8.48	12.21	1.08	0.21	28.4	-19
	5/15/19	8.11	11.90	0.986	4.12	15	-28
	03/2014	7.34	12.41	1.71	3.10	78.1	-51
	04/24/17	6.01	9.81	0.102	8.60	21.8	123
MW-7	5/21/18	7.02	11.67	0.082	4.60	11.8	113
	5/15/19	7.01	11.41	0.110	8.60	10	121
	03/2014	7.12	12.03	1.84	3.09	81.4	-45
	04/24/17	6.89	9.42	0.361	4.80	644	-62
MW-8	5/21/18	7.26	10.40	0.262	3.42	36.1	-80
	5/15/19	7.19	9.70	0.266	8.25	32	-70

Table 2: Groundwater Field Parameters MAF F-1

ORP - Oxidation Reduction Potential

 $\mu g/L$ - Micrograms per liter

mg/L - Milligrams per liter

NTUs - Nephelometric Turbidity Units

°C – Degrees Celsius

DO – Dissolved Oxygen

Sp. Cond – Specific Conductivity mS/cm – Millisiemens per centimeter

Well ID	Date Sampled	рН	Temp (°C)	Sp. Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTUs)	ORP (mV)
	03/2014	7.13	13.31	1.58	1.35	31.3	-69
	08/25/15	7.75	11.86	1.58	0.3	163	-28
	11/10/15	7.95	9.81	1.86	NA	273	-20
MW-9	04/17/16	7.60	17.90	1.64	1.63	248	-13
	04/24/17	7.73	11.82	1.62	1.62 1.09		-198
	5/21/18	7.43	12.02	1.42	1.10	90	-118
	5/15/19	7.51	11.90	1.35	3.69	90	-121
	03/2014	7.34	11.60	1.46	1.72	3.00	-78
	08/25/15	7.93	12.09	1.30	14.0	44	87
	11/10/15	7.90	11.42	1.13	NA	163	70
MW-10	04/17/16	7.60	18.20	1.06	2.00	188	68
	04/24/17	7.80	10.91	1.57	0	220	69
	5/21/18	7.50	10.89	1.37	0	56	19
	5/15/19	7.25	11.54	1.53	1.23	56	14
	08/25/15	8.34	10.96	1.16	1.00	195	50
	11/10/15	8.61	10.19	1.21	NA	200	58
	04/17/16	8.20	13.30	1.29	1.7	109	54
MW-11	04/24/17	8.40	9.63	1.25	0.60	112	22
	5/22/18	8.80	10.23	1.55	0.70	82	32
	5/15/19	8.51	10.23	1.55	2.10	78	42
	03/2014	7.35	10.69	1.27	3.65	29.60	-116
	08/25/15	7.46	11.62	1.81	0	185	-102
	11/10/15	7.26	10.55	1.63	NA	222	-83
MW-12	04/17/16	7.20	15.70	1.48	0.90	197	-50
	04/24/17			Not sampled due t	o 0.08' of free	product in well	
	5/22/18	7.90	10.92	1.41	0	105	42
	5/15/19	8.02	10.83	1.63	1.14	49	30
	08/25/15	8.45	12.67	0.52	4.30	1000	47
	11/10/15	8.58	11.17	0.62	NA	111	50
	04/17/16	7.90	13.20	0.51	0.9	78	59
MW-13	04/24/17	8.71	10.16	0.556	3.14	1000	86
	5/22/18	8.02	10.01	0.356	2.52	70	87
	5/15/19	7.99	10.02	0.370	7.60	80	87

Table 2: Groundwater Field Parameters MAF F-1 continued

μg/L - Micrograms per liter

mg/L - Milligrams per liter

NTUs - Nephelometric Turbidity Units

ORP - Oxidation Reduction Potential

mV - Millivolts

DO – Dissolved Oxygen

Sp. Cond – Specific Conductivity

mS/cm – Millisiemens per centimeter

NA – The DO sensor was not functioning during the November 2015 sampling event.

°C – Degrees Celsius

Table 2: Groundwater Field Parameters MAF F-1 continued

Well ID	Date Sampled	рН	Temp (°C)	Sp. Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTUs)	ORP (mV)
MW-14	5/22/18	8.11	10.27	1.16	0	84	43
11114	5/15/19	8.42	10.15	1.00	3.19	81	39
MW-15	5/22/18	7.62	11.04	1.40	0.12	45	108
	5/15/19	7.59	10.98	1.20	4.14	32	98

 μ g/L - Micrograms per liter

mg/L - Milligrams per liter

NTUs - Nephelometric Turbidity Units

ORP - Oxidation Reduction Potential

mV - Millivolts

DO – Dissolved Oxygen Sp. Cond – Specific Conductivity mS/cm – Millisiemens per centimeter

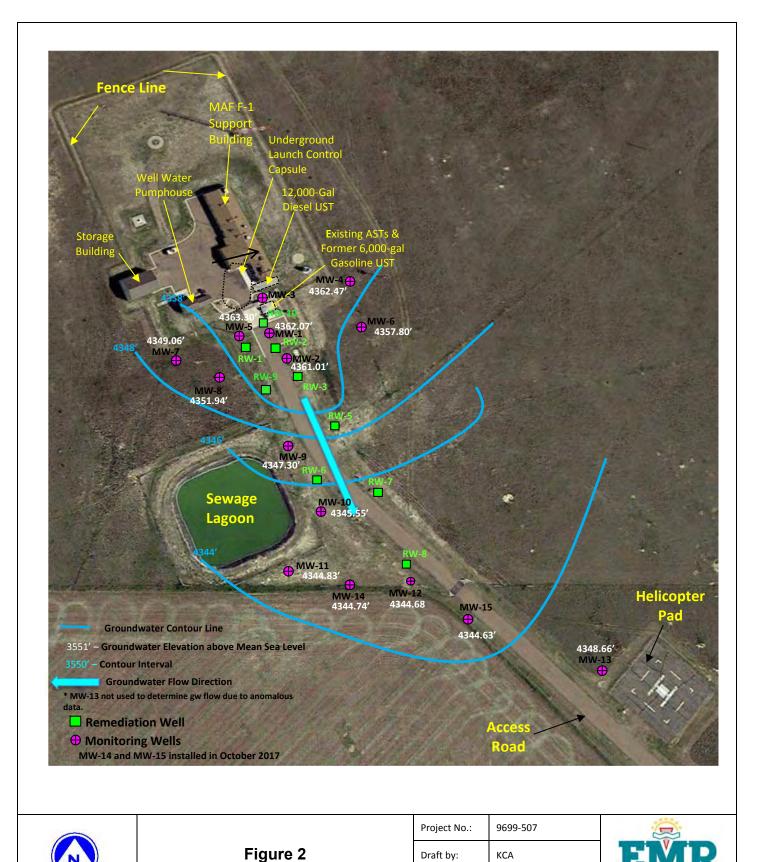
°C – Degrees Celsius

NA – The DO sensor was not functioning during the November 2015 sampling event.

TABLE 3

VPH and EPH (with Fraction Data) Concentrations in Groundwater Missile Alert Facility F-1 (TU507) Augusta , Montana December 2012 - May 2019

Decem	ber 2012 - Ma	ay 2019					-	-									
Sample ID	Date Sample Taken	C5-C8 Aliphatic Hydrocarbons	C9-C12 Aliphatic Hydrocarbons	C9-C10 Aromatic Hydrocarbons	Total Purgeable Hydrocarbons	Benzene	Ethylbenzene	Methyl tert-butyl ether	Naphthalene	Toluene	m,p-Xylene	o-Xylene	Total Extractable Hydrocarbons (EPH Screen)	C9-C18 Aliphatic Hydrocarbons	C19-C36 Aliphatic Hydrocarbons	C11-C22 Aromatic Hydrocarbons	Total Petroleum Hydrocarbons (TEH - Post Fractionation)
	12/12/2012	6090	3910	7260	30900	1810	1430	<6.2 U	651	842	7340	2170	15500 E	1140	<35.9 U	<164 U	1180
	3/18/2014	7850 5880	1140 2180	10600	38300	2410	2030 739	184	734	1210 1190	10000	2900	16900 CCE, TEH, 14200 TEH	185	<73.0 U 184	123 71	308
	8/25/2015 11/10/2015	4200	2060	5270 4530	25300 22800	1260 1010	909	<8.4 U <16.9 U	413 277	1430	6340 6280	2440 2370	13200 TEH	423 925	<23.7 U	234	678 1180
MW-1	4/17/2016	3630	888	4250	14100	289	175	67.2	246	147	3230	1380	8820 TEH	1080	<23.7 U	99.2 J	1180
	4/24/2017	15600	26500	6380	51000	1860	2140	192	1050	1340	9430	3950	24300	<546	<546	1040	1230
	5/21/2018	7220	7600	7260	35500	1420	1340	<14.8	596	667	7490	2490	8120 TEH	92.9	285	388	766
	5/15/2019	7990	10100	7700	38000	1170	1440	<4	619	813	6900	1880	65000	14000	<240	1800	16000
	12/12/2013	1720	860	1290	9500	3160	393	80.8	<11.7 U	1000	106	900	9300 E	156	<32.9 U	161	316
	3/14/2014 8/25/2015	3200 3930	1460 790	2810 1910	14900 11700	3420 2840	370 504	163 <4.2 U	40.0 242	811 189	2120 1360	590 180	7980 TEH 8700 TEH	<40.9 U 179	<73.0 U 242	<63.1 U <34.1	<177 U 421
	11/10/2015	2410	834	1040	5340	381	75.5 J	25.5 J	98.2 J	94.4 J	356	125	25.400 TEH	186	379	1350	1920
MW-2	4/17/2016	2670	435	1040	7160	1370	293	80.3	73.2	222	876	170	37800 TEH, E	375	38.3 J	912	1330
	4/24/2017	6450	5150	1230	12900	2500	838	26.8	249	467	1800	439	28200	<570	<570	<570	<570
	5/21/2018	3280	1790	1630	11000	1610	520	71.8	174	334	1490	292	7750 TEH, E	<14.6	265	112	383
	5/15/2019	2780	3030	2010	13500	1660	664	<4	226	518	2250	562	22000	260	<48	240	500 J
MW-3	12/12/2012	194	34.4 13.4 J	61.3	353 69 J	30.2 <1.3 U	3.9 J <1.4 U	<1.6 U <1.6 U	<1.2 U <1.2 U	2.0 J	20.4	6.2	310.0 384	194 46.2 J	34.4 13.4 J	61.3	353 69 J
	2/18/2013 4/24/2017	46.2 J <100	<100	9.3 J <100	<200	<1.3 0	<5	<1.6 U	<5	<1.3 U <5	<2.8 U <10	<1.1 U <5	<273	46.2 J NA	13.4 J NA	9.3 J NA	NA
MW-4	5/21/2018	14.3	<25	<25	<100	<0.453	<0.420	<0.297	<0.491	<0.373	<0.819	<0.416	<109	NA	NA	NA	NA
	5/15/2019	<50	<50	<20	<100	<2	<2	<2	⊲	<2	<5	<2	<300	NA	NA	NA	NA
	2/18/2013	13400	11000	14100	48800	428	1070	<77.5 U	716	870	6190	1820	7280 E	395	<40.5 U	283	678
	3/18/2014	640	130	614	1930	37.7	66.4	<1.68 U	41.6	40.1	320	86.2	1030 TEH	53.3 J	<73.0 U	<63.1 U	<177 U
	8/25/2015	950	786	1910	4730	82.4	73.5	<3.38 U	102	127	586	218	1030 TEH	680	<23.7 U	172	852
MW-5	11/10/2015 4/17/2016	2340 1150	1650 375	2940 1560	9050 4470	166.0 133	165.0 119	<16.9 U 7.79 J	133 82.9	248 202	1140 698	388 232	11500 TEH 13900 TEH	650 1370	88.4 J <23.7 U	379 599	1120 1970
	4/24/2017	572	568	298	1540	18.1	28.9	<5	24.7	46.4	118	62	3920	<546	<546	<546	<546
	5/21/2018	370	269	319	1310	30.1	32.9	<0.297	22.2	58.5	173	56	715	NA	NA	NA	NA
	5/15/2019	117 J	56.5 J	76.2 J	277	<2	4.39 J	<2	\$	3.03 J	15	5	460	NA	NA	NA	NA
	3/18/2014	70.0 J	16.4 J	61.3	151	1.84 J	<2.16 U	<1.68 U	0.474 J	<0.995 U	<4.13 U	<2.22 U	4440 TEH	70.0 J	16.4 J	61.3	151
MW-6	4/24/2017	<100	<100	<100	<200	<5	<5	11	<5	<5	<10	<5	<285	NA	NA	NA	NA
	5/21/2018 5/15/2019	<10 <50	<25 <50	<25 <20	<100 <100	<0.453 <2	<0.420 <2	8.81 6.99	<0.491 <3	<0.373 <2	<0.819 <5	<0.416 <2	126 <300	NA	NA NA	NA NA	NA NA
	4/24/2017	<100	<100	<100	<200	<5	<5	<5	^ <5	<5	<10	<5	<300	NA	NA	NA	NA
MW-7	5/21/2018	13.2	<25	<25	<100	<0.453	0.421	<0.297	<0.491	<0.373	1.52	< 0.416	126	NA	NA	NA	NA
	5/15/2019	<50	<50	<20	<100	<2	<2	<2	<3	<2	<5	<2	<300	NA	NA	NA	NA
	4/24/2017	1020	188	132.0	1340	107	30.5	12.4	12.7	6.96	<10	<5	471	NA	NA	NA	NA
MW-8	5/21/2018	20.7	<25	<25	<100	2.39	1.32	0.325	0.905	<0.373	1.18	<0.416	266	NA	NA	NA	NA
	5/15/2019	123 J	<50	47 J 11500	230	21.7	3.8 J 1270	<2	3.25 J 1 080	<2	<5	<2	<300 10200 E	NA	NA	NA	NA
	2/18/2013 3/14/2014	4200	3770	7620	37900 39400	5490	1270	31.0 U	1,000	878 2590	6450 7460	1400 2520	8640 TEH	<35.2 U <40.9 U	<33.9 U <73.0 U	<155 U 150	<147 U 179 J
	8/26/2015	10600	2060	5080	32800	4240	704	<16.9 U	457	1590	6260	2260	8500 TEH	1660	<23.7 U	151	1810
MW-9	11/10/2015	4190	1560	2380	14200	2060	478	99.5 J	131	878	1870	703	20700 TEH	485	333	1570	2390
10100-9	4/17/2016	13800	1420	7480	42600	4910	1940	420	612	2100	7960	2590	16700 TEH, E	2860	<23.7 U	1130	3990
	4/24/2017	20900	16000	3510	40400	4330	1810	612	641	1170	5740	1990	25900	<600 J4	<600	917	1160
	5/21/2018 5/15/2019	3560 12400	3620 8450	3610	15400 40000	1170 3370	642 1700	60 <10	293 444	243 973	1930 5830	606 1660	7700 TEH, E 13000	1320 660	<20.1 <49	334 <390	1650 660
	2/18/2013	4820	4730	5650 6920	22600	2800	997	31.0 U	444 847	973 100	2140	123	5770	<34.4 U	<49 <33.2 U	<390 <75.8 U	<143 U
	3/14/2014	2250	1760	3450	10800	1790	560	71.2	553	51.8	881	23.2	4150 TEH	<40.9 U	<73.0 U	89.3 J	<177 U
	8/25/2015	532	196	471	1810	291	118	<1.69	75.8	14.7	175	10.3	946 TEH	NA	NA	NA	NA
MW-10	11/10/2015	1240	561	649	2520	56	<11.8 U	<8.45 U	<11.0 U	<18.1 U	<23.6 U	<11.6 U	27400 TEH	229	217	1220	1670
	4/17/2016	457	117	370	1420	272	72.2	11.4	43.1	10.1	104	6.18	28700 TEH, E	170	<23.7 U	558	728
	4/24/2017	1960	1540	644	4140	494	262	23.0	162.0	21.8	252	18.4	13800	<600 J4 279	<600	<600	<600
	5/21/2018 5/15/2019	1360 1490	1330 1130	1540 1480	5920 5190	799 475	368 242	<0.297 <2	249.0 160.0	22.4 16.2	458 367	38.0 49.6	5970 TEH, E 6700	110	<20.3 <49	223 <78	502 110 J
	3/15/2013	44.4 J	9.54 J	28.2	85.3 J	1.3 J	<1.4 U	<1.6 U	<1.2 U	<1.3 U	<2.8 U	<1.1 U	<103 U	44.4 J	9.54 J	28.2	85.3 J
1	8/26/2015	113	28.9	39.7	204.0	9.8	9.4	<0.84 U	6.5	<1.8 U	<1.1 U	<1.1 U	349	NA	NA	NA	NA
1	11/10/2015	79	21.7 J	18.3 J	126.0	3.32 J	1.52 J	<0.845 U	<1.10 U	<1.81 U	<2.36 U	<1.16 U	4040 TEH	189	<23.2 U	143.0	332.0
MW-11	4/17/2016	34.8 J <100	<3.84 U <100	19.0 J	56.6 J	<1.92 U <5	<1.74 U <5	<2.29 U <5	<3.06 U <5	<1.54 U <5	<3.40 U <10	<1.64 U <5	848	NA	NA	NA	NA NA
1	4/24/2017 5/22/2018	<100	<100 403.0	<100 352.0	<200 1020.0	<5 7.59	<5 6.1	<5 0.695	<5 37.3	<5 6.5	<10 76.1	<5 43.8	<300 507	NA	NA	NA	NA
1	5/15/2019	<50	<50	<20	<100	<2	<2	<2	<3	<2	<5	<2	<300	NA	NA	NA	NA
	3/15/2013	3010	545	4860	13000	1130	1150	<6.2 U	482	121	1760	401	4540	441	<32.2 U	157	NA
	3/14/2014	3500	2250	4200	13600	1010	1060	57.1	600	73.3	1150	252	3590 TEH	<40.9 U	<73.0 U	87.1 J	<177 U
1	8/26/2015	6510	8390	21500	53000	543	2270	<33.8 U	1690	208	11100	2790	77500 TEH	30600	<47.3	2190	32700
MW-12	11/11/2015 4/17/2016	11800 115000	19900 1230000	42400 3400000	87700	558 <1920 U	1640 4480 J	<84.5 U <2290 U	2530 250000	183 J <1540 U	8790 28700	2350 10700	96000 TEH 209000 TEH, E	34700 CCE, E 127000 CCE, E	164 <237 U	3260 16800	38200 143000
WWV-12	4/17/2016	115000	1230000	3400000	4800000	< 1920 0	4400 J					PRESENT		127000 CCE, E	<237 U	10000	143000
1	10/24/2017	3560	8170	22700	46800	430	1770	<29.7 U	1220	89.3	7990	2000	21500 E	59200 CCE	<394 U	<680 U	NA
1	5/22/2018	5160	16600	19900	48600	279	983	<29.7	1610	111.0	4250	1220	14700	9600	37	4210	13800
	5/15/2019	4780	6090	8050	22500	459	801	<2	463	68.3	1920	334	27000	5600	<96	1800	7400
	3/13/2013	23.1 J	<4.22 U	9.77 J	36.0 J	<1.3 U	<1.4 U	<1.6 U	<1.2 U	<1.3 U	<2.8 U	<1.1 U	115	23.1 J	<4.22 U	9.77 J	36.0 J
1	8/26/2015	35.0 J	17.9 J	5.0 J	55.8 J	<0.9 U	<1.1 U	<0.8 U	1.4 J	<1.8 U	<2.3 U	<1.1 U	231	NA	NA	NA 450	NA 338
MW-13	11/11/2015 4/17/2016	47.5 J 64.8 J	14.0 J <3.84 U	10.8 J 20.2 J	73.2 J 89.5 J	<0.945 U <1.92 U	<1.18 U <1.74 U	<0.845 U <2.29 U	<1.10 U <3.06 U	<1.8 U <1.54 U	<2.36 U <3.40 U	<1.16 U <1.64 U	3420 TEH 1370 TEH	186 155	<23.2 U <23.7 U	152 <34.1 U	338 184 J
	4/24/2017	<100	<100	<100	<200	<5	<5	<5	<5	<5	<10	<5	<300	NA	NA	NA	NA
1	5/22/2018	<10	<25	<25	<100	<0.453	<0.420	<0.297	<0.491	<0.373	<0.819	<0.416	132		NA	NA	NA
	5/15/2019	<50	<50	<20	<100	<2	<2	<2	<3	<2	<5	<2	<300	NA	NA	NA	NA
MW-14	5/22/2018	1460	734	781	3400	285	64.5	<0.297	69.7	6.53	79.7	18.3	1030	141	<20.3	163	650
	5/15/2019	662	132 J 6050	204 9090	1020	13.1	7.53	<2	<3 426.0	<2 9.03	<5	<2	730 9930 E	NA 10100	NA <419 U	NA <722.11	NA NA
MW-15	10/24/2017 5/22/2018	1260 1070	6050 2920	9090 2550	17400 6730	<4.53 U <9.06	276.0 48.9	<2.97 U <5.94	426.0 111.0	9.03 <7.46	620.0 112.0	96.0 24.3	9930 E 3350	10100 1460	<419 U <20.1	<722 U 798	NA 2260
	5/15/2019	1220	1110	1750	4120	<2	39.0	<2	27.0	<2	<5	3.73 J	3100	520	<48	380	900
DEQ Tier	1 RBSL (ug/L)	650	1400	1100	NE	5.00	700	30	100	1000		000	NE	1400	1000	1100	NE
	ing I available at availab																


Be: Remediation Level and available
 Book The Remediation Level and available
 Remediation Level Available
 Remediatin Level Availab

NA - Not Analyzed

Remedial Injections were completed between June 8, 2015 and October 27, 2015.

Data compared to the May 2018 DEQ Tier 1 RBSLs Note: Data from the 8/25/15 sampling groundwater sampling event have been qualified as estimates (J) and biased low because the sample temperatures at time of analysis exceeded EPA recommendations.

FIGURES

Reviewed by:

Reference:

Date:

JAH

01/08/2017

INCORPORA INFRASTRUCTURE AND ENVI

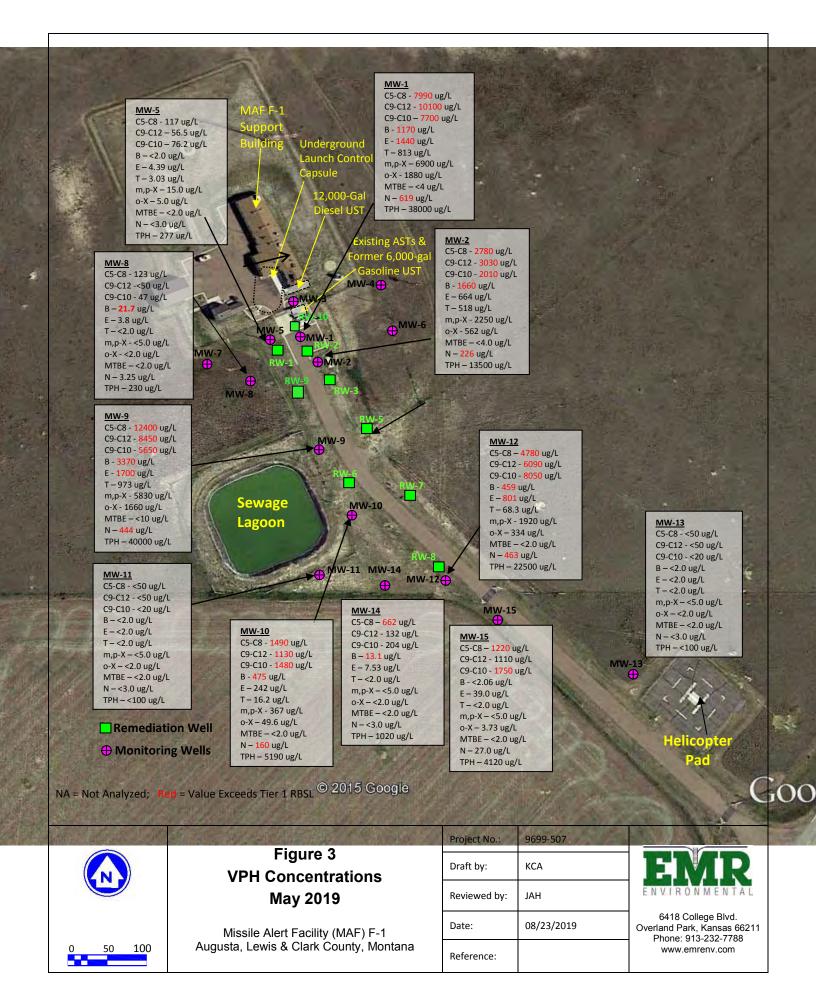
2110 Delaware St., Suite B

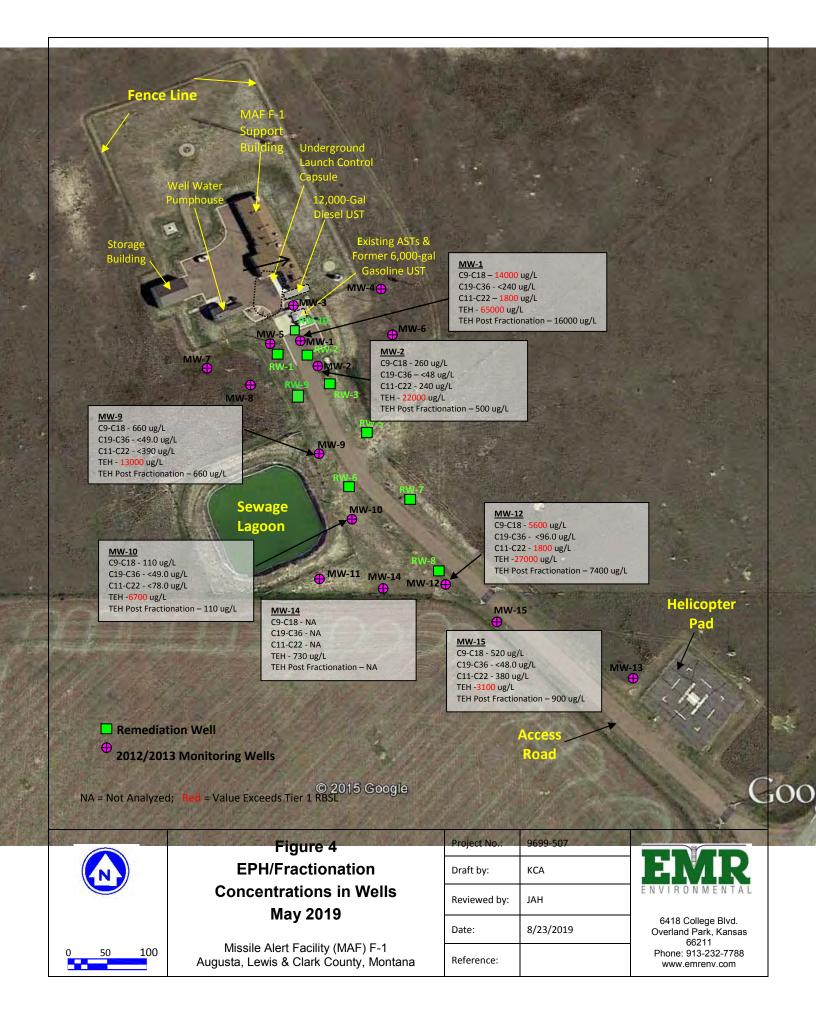
Lawrence, Kansas 66046

Phone: 785-842-9013

Fax: 785-842-3863

www.emr-inc.com


May 2019 Potentiometric Map


Missile Alert Facility (MAF) F-1

Augusta, Lewis & Clark County, Montana

100

50

Montana DEQ RBSLs

TABLE 3 TIER 1 GROUNDWATER RBSLs AND STANDARDS

This table applies to groundwater and consists of DEQ-7 Human Health Standards (HHSs; DEQ 2012), where available. For compounds without DEQ-7 HHSs, DEQ has developed RBSLs and included them in the table. For EPH compounds, a total extractable hydrocarbon (TEH) concentration of 1,000 μ g/L is used to determine if additional analysis (fractionation) is needed. Surface water impacts require a minimum of a Tier 2 evaluation.

			Groundwater
			Standard or RBSL
Chemical	Effect		(µg/l)
For Gasoline and Light Hydroca			
Massachusetts Method for Volat	tile Petroleum	Hydroc	carbons (VPH)
C5-C8 Aliphatics (b)	n	rb	650
C9-C12 Aliphatics ^(b)	n	rb	1,400
C9-C10 Aromatics ^(b)	n	rb	1,100
MTBE	n	hhs	30
Benzene	с	hhs	5
Toluene	n	hhs	1,000
Ethylbenzene	n	hhs	700
Xylenes	n	hhs	10,000
Naphthalene	с	hhs	100
Lead Scavengers			
Ethylene dibromide (EDB)	с	hhs	0.017
1,2-Dichloroethane (DCA)	с	hhs	4
For Diesel and Heavy Hydrocard Massachusetts Method for Extra EPH / TEH Screen fractionation re	ctable Petrole		
Massachusetts Method for Extra EPH / TEH Screen fractionation re	ctable Petrole		drocarbons (EPH) 1,000
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b)	equired ^(a)	um Hyo	drocarbons (EPH) 1,000 1,400
Massachusetts Method for Extra EPH / TEH Screen fractionation re	equired ^(a)	um Hyo	drocarbons (EPH) 1,000 1,400 1,000
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics	equired ^(a) n n	rb bu	drocarbons (EPH)
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b)	equired ^(a) n n n n	um Hyo rb bu rb	drocarbons (EPH) 1,000 1,400 1,000 1,100 70
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene	equired ^(a) n n n n n n	rb bu rb hhs	drocarbons (EPH) 1,000 1,400 1,000 1,100
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene	equired ^(a) n n n n n n n n n n	rb bu rb hhs hhs	drocarbons (EPH) 1,000 1,400 1,000 1,100 70 2,100
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benz(a)anthracene	equired ^(a) n n n n n c n c c	rb bu rb hhs hhs hhs	drocarbons (EPH) 1,000 1,400 1,000 1,100 70 2,100 0.5 0.05*
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benz(a)anthracene Benzo(a)pyrene	equired ^(a) n n n n c c c c c c c c	rb bu rb hhs hhs hhs hhs	drocarbons (EPH) 1,000 1,400 1,000 1,100 70 2,100 0.5 0.05*
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	equired ^(a) n n n n n c c c c c c c	rb bu rb hhs hhs hhs hhs hhs	trocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 0,5 0,05 0,05 5 5 5 5 5 5 5 5 5 5 5 5
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	equired ^(a) n n n n n c c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs	trocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 0,5 0,05 0,05 5 5 5 5 5 5 5 5 5 5 5 5
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	actable Petrole equired ^(a) n n n n c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs hhs hhs	trocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 2,100 0,5 0,05* 0,05 5 5 5 5 0,05* 20
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	actable Petrole equired ^(a) n n n n c c c c c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs hhs hhs	trocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 2,100 0,5 0,05* 0,05 5 5 5 5 0,05* 20
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	actable Petrole equired ^(a) n n n n c c c c c c c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs hhs hhs hhs	trocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 2,100 0,5 0,05* 0,05 5 5 5 5 0,05* 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	actable Petrole equired ^(a) n n n n n c c c c c c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs hhs hhs hhs hhs	drocarbons (EPH) 1,000 1,400 1,000 1,100 70 2,100 0.5
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	actable Petrole equired ^(a) n n n n c c c c c c c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs hhs hhs hhs hhs hh	drocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 0.05* 0.05* 50 0.05* 0.05* 0.05* 0.05* 0.05* 0.05* 0.05* 0.05* 0.05*
Massachusetts Method for Extra EPH / TEH Screen fractionation re C9-C18 Aliphatics ^(b) C19-C36 Aliphatics C11-C22 Aromatics ^(b) Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	actable Petrole equired ^(a) n n n n c c c c c c c c c c c c c c c	rb bu rb hhs hhs hhs hhs hhs hhs hhs hhs hhs hh	trocarbons (EPH) 1,000 1,400 1,000 1,100 2,100 0,5 0,05 0,05 5 5 5 5 5 5 5 5 5 5 5 5

Notes:

(a) = An exceedance of the 1,000 μg/l EPH/TEH screen value indicates only that fractionation is required. If none of the fractions exceed, then the EPH/TEH value does not need to be identified as a COPC exceeding RBSLs.

(b) = The fraction surrogate (for modeling purposes) uses a representative compound with a mid range Equivalent Carbon Number (Massachusetts DEP 2002 Table 4-14). This number doesn't take into account the higher molecular weight compounds that have higher solubilities than the fraction surrogate therefore underestimating the overall solubility of the fraction.

Effect is either:	$n =$ non-carcinogenic RBSLs and RSLs are based on a hazard quotient of 1, or $c =$ carcinogenic RBSLs and RSLs are based on a cancer risk $1X10^{-5}$.
Basis is:	rb = risk-based screening level; hhs = DEQ-7 Human Health Standard (DEQ, October 2012. Circular DEQ-7 Montana Numeric Water Quality Standards); or rsl = tapwater risk-based screening level based upon TR of 1E-05 and THQ of 1.0 consistent with DEQ-7 bu = adversely affects beneficial uses (foul taste or odor). * = The best achievable practical quantitation limit (0.1 μg/L) may be greater than the human health standard; therefore, if the compound is detected, additional evaluation may be necessary.

The RBSLs for soil and water are not designed to be protective of the vapor intrusion (VI) pathway. Please refer to the Vapor Intrusion to Indoor Air Section of the Montana Risk-Based Corrective Action Guidance for Petroleum Releases.

Groundwater Sampling Logs

SITE NAME: MA	AF F-1				-	ITE OCATION: Au	iqusta.	MT						
WELL NO:				SAMPLE			<u>g</u> ,			DATE: 5	/15/201	9		
					PUR	GING DA	TA							
WELL DIAMETER	R (inches): 2	TUBING DIAMET	ER (inches):			INTERVAL feet to 49.		STATIC D	EPTH R (feet): 30.61			E PUMP TY ILER: BP	PE	
	UME PURGE: t if applicable)	1 WELL VOL		AL WELL DEP	FH – STA feet –		O WAT	,	WELL CAPAC feet) X 0.1			gallons/for	ot = 2.97	
gallons			- (+9.2	ieel –	50.01				0		gallons/loc	n – 2.97	
	NT VOLUME PU t if applicable)	JRGE: 1 EQUI	PMENT VOL	= PUMP VOLU	JME + (TUI llons + (TY ons/foot		IBING LENGTH	,	/ CELL \	VOLUME	= gallons	
	IMP OR TUBIN				,	PURGIN	IG		PURGING	,		OTAL VOL	UME	
DEPTH IN	WELL (feet):	38	DEPTH IN	WELL (feet): 3	8	INITIATE	ED AT:	941	ENDED AT:	1002	P	URGED (g:	allons): 5.25	
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	(circle µmh	DND. e units) los/cm l <mark>lS/cm</mark>	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURB (NT	BIDITY Us)	ORP (mV)	ODOR (describe)	
953	3	3	.25	30.97	7.3	12.65	1.	.56	2.99	9	0	42		
956	959 .75 4.50 .25 31.01 7.4 12.62 1.51 2.84 83 44													
959	959 .75 4.50 .25 31.01 7.4 12.62 1.51 2.84 83 44													
1002														
	1002 .75 5.25 .25 31.00 7.4 12.61 1.51 2.86 84 41													
	PACITY (Gallon ISIDE DIA. CAR			1" = 0.04; 0006; 3/16"				" = 0.37; 5/16" = 0.0		5" = 1.02 0.006;	2; 6" 1/2" = (12" = 5.88 5/8" = 0.016	
PURGING	EQUIPMENT C	ODES: B =	= Bailer;	BP = Bladder P	17	ESP = Electric		rsible Pun	np; PP = P	eristaltic I	Pump;	0 = Ot	her (Specify)	
					-	PLING DA	AIA							
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adkis		E(S):			SAMPLING INITIATED A	T:1002		SAMPLING		
PUMP OR DEPTH IN		38		TUBING MATERIAL CO	DE: PE				FILTERED: Y on Equipment Ty			FILTER SI	ZE:μm	
FIELD DEC	CONTAMINATIO	ON: PUMF	P <mark>Y</mark> N	l	TUBING	Y <mark>N (re</mark>	eplaced)	DUPLICATE:	Y Y	r	N		
SAMPLE	PLE CONTAINE	MATERIAL		PRESERVATI		RESERVATIO	N	FINAL	INTEND ANALYSIS A	ND/OR	EQUI	IPLING PMENT	SAMPLE PUMP FLOW RATE	
ID CODE	CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (I	mL)	pH	METHC	D	C	ODE	(mL per minute)	
		SEE	CHAIN	OF CUST	ODY									
MW-1	3	AG	40ml	HCI		Prepres			VPH		-	BP	200	
MW-1	1	AG	1L	HCI		prepres			EPH		1	BP	500	
REMARKS	:										<u> </u>			
MATERIAL		AG = Amber G		= Clear Glass;					ene; S = Silic		= Teflor		ther (Specify)	
SAMPLING	GEQUIPMENT			eristaltic Pump; se Flow Peristal	B = Ba tic Pump;			er Pump; d (Tubing (ESP = Elect Gravity Drain);		ersible F Other (Sp			

SITE NAME: MAF F-1	1				SI LC	TE DCATION: Au	igusta,	MT							
WELL NO: MW-2	2			SAMPLE	ID: MW-2					DATE: 5	5/15/201	9			
					PURG	SING DA	TA								
WELL DIAMETER (inche	es): 2		θ ΓER (inches):		L SCREEN TH: 20.7	INTERVAL feet to 50.		STATIC D TO WATE	EPTH R (feet): 29.11			E PUMP TY ILER: BP	/PE		
WELL VOLUME (only fill out if app		1 WELL VOI	LUME = (TOT		TH – STA		TO WAT	,	WELL CAPAC feet) X 0.1			gallons/fo	ot = 3.45		
gallons															
EQUIPMENT VO (only fill out if app		IRGE: 1 EQU	IPMENT VOL		UME + (TUB Illons + (TY ons/foot		IBING LENGTH	·	V CELL	gallons	= gallons		
INITIAL PUMP OI DEPTH IN WELL		G 38		MP OR TUBING WELL (feet): 3		PURGIN		1015	PURGING ENDED AT:	1036		OTAL VOL PURGED (g	UME allons): 5.25		
IME PU	DLUME JRGED allons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle μmh	DND. e units) os/cm เS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	-	BIDITY FUs)	ORP (mV)	ODOR (describe)		
1027	3	3	.25	29.70	7.85	12.87	3.	.11	4.59	1	19	-120)		
1030 .	1033 .75 4.50 .25 30.0 8.07 12.55 3.12 4.51 106 -105														
1033 .75 4.50 .25 30.0 8.07 12.55 3.12 4.51 106 -105 1036 .75 5.25 .25 30.01 8.09 12.56 3.12 4.50 107 -102															
1036 .															
	1036 .75 5.25 .25 30.01 8.09 12.56 3.12 4.50 107 -102														
WELL CAPACITY TUBING INSIDE	Y (Gallons DIA. CAP	s Per Foot): (ACITY (Gal./F	0.75" = 0.02; =t.): 1/8" = 0.	1" = 0.04; .0006; 3/16"				" = 0.37; 5/ 16" = 0.0	4" = 0.65; 004; 3/8" = 0	5" = 1.02 0.006;	2; 6" 1/2" =	= 1.47; 0.010;	12" = 5.88 5/8" = 0.016		
PURGING EQUIP	PMENT CO	ODES: B	= Bailer;	BP = Bladder F	17	SP = Electric		rsible Pun	np; PP = P	eristaltic	Pump;	0 = 0	ther (Specify)		
					SAMP	LING DA	ATA								
SAMPLED BY (PI		FFILIATION:		SAMPLER(S) K. Adha		Ξ(S):			SAMPLING INITIATED A	T:1036		SAMPLIN ENDED A			
PUMP OR TUBIN DEPTH IN WELL		38		TUBING MATERIAL CO	DE. BE				FILTERED: Y			FILTER S	IZE:μm		
FIELD DECONTA			IP <mark>Y</mark> N		TUBING	Y <mark>N (re</mark>	eplaced		DUPLICATE		1	N			
SAMPLE CO	ONTAINEI	R SPECIFICA	TION		SAMPLE PF	RESERVATIO	N		INTEND			IPLING	SAMPLE PUMP		
	# TAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		fotal vol D in Field (1	mL)	FINAL pH	ANALYSIS A METHC			IPMENT ODE	FLOW RATE (mL per minute)		
		SEE	CHAIN	OF CUS	FODY										
MW-2	3	AG	40ml	HCI		Prepres			VPH			BP	200		
MW-2	1	AG	1L	HCI		prepres			EPH			BP	500		
<u> </u>															
REMARKS:															
MATERIAL COD		AG = Amber		= Clear Glass;	PE = Poly				ene; S = Silic				Other (Specify)		
SAMPLING EQU				eristaltic Pump; se Flow Peristal	B = Bai tic Pump;			er Pump; d (Tubing	ESP = Elect Gravity Drain);		ersible F Other (S				

SITE NAME: MA	ΑF F-1				SI LO	FE ICATION: AU	igusta, l	МТ							
WELL NO:	MW-4			SAMPLE	ID: MW-4		0			DATE: 5	/15/201	9			
					PURG	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET	i ER (inches):		LL SCREEN PTH: 25.5	NTERVAL	S	TATIC D O WATE	EPTH R (feet): 28.13			E PUMP TY ILER: BP	/PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT = (4		PTH – STA feet – 2		O WATE	,	WELL CAPACI feet) X 0.16		1	gallons/foc	ot = 2.78		
				= PLIMP VOI	UME + (TUB	ING CAPACI	тү у	к ті	JBING LENGTH) + FL OW	/ CELL Y				
	t if applicable)				allons + (ons/foot >		feet			gallons	= gallons		
	JMP OR TUBIN WELL (feet):	G 38		/IP OR TUBINO WELL (feet):		PURGIN INITIATE		1050	PURGING ENDED AT:	1108		OTAL VOL URGED (g	.UME allons): 3.75		
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CON circle) 400 (circle) 07 (units) s/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	-	BIDITY Us)	ORP (mV)	ODOR (describe)		
1055	1.5	1.5	.25	32.21	7.89	11.60	1.1	11	6.97	3	5	54			
1102	1105 .75 3 .25 32.25 7.90 11.61 1.12 7.01 30 56														
1105	1105 .75 3 .25 32.25 7.90 11.61 1.12 7.01 30 56 1108 .75 3.75 .25 32.25 7.91 11.60 1.12 7.02 30 56														
1108															
	1108 .75 3.75 .25 32.25 7.91 11.60 1.12 7.02 30 56														
	PACITY (Gallon NSIDE DIA. CA							= 0.37; 16" = 0.0		5" = 1.02 0.006;	2; 6" 1/2" = (12" = 5.88 5/8" = 0.016		
PURGING	EQUIPMENT O	ODES: B	= Bailer;	BP = Bladder I	^D ump; E	SP = Electric	Submer	sible Pur	mp; PP = Pe	eristaltic f	Pump;	O = O	ther (Specify)		
					-	LING DA	ATA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adk		E(S):			SAMPLING INITIATED A	T:1108		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	38		TUBING MATERIAL C	ODE: PE				FILTERED: Y			FILTER S	IZE:μm		
FIELD DEC	CONTAMINATIO	ON: PUM	P <mark>Y</mark> N		TUBING	Y <mark>N (re</mark>	eplaced)		DUPLICATE:	Y		N			
SAM	PLE CONTAINE	A SPECIFICA		PRESERVAT		ESERVATIO		FINAL	INTENDE ANALYSIS A	ND/OR	EQUI	IPLING PMENT	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	D IN FIELD (рН	METHO	D	C	ODE	(mL per minute)		
		SEE	CHAIN	OF CUS	TODY										
MW-4	3	AG	40ml	HCI		Prepres			VPH		E	BP	200		
MW-4	1	AG	1L	HCI		prepres			EPH		ł	BP	500		
REMARKS	5:														
MATERIA	L CODES:	AG = Amber 0	Blass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Pc	lypropyl	ene; S = Silico	one; T	= Teflor	n; O = C	Other (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Perista			Bladder Method		ESP = Electr Gravity Drain);		ersible F Other (Sp				

SITE NAME: MA	\F F-1				SI	TE DCATION: AU	iqusta.	МТ							
WELL NO:				SAMPLE	ID: MW-5		<u><u> </u></u>			DATE: 5	5/15/201	9			
					PURG	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET) ER (inches):		LL SCREEN PTH: 27		S	TATIC D O WATE	EPTH R (feet): 29.01			E PUMP TY ILER: BP	/PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT) = (PTH – STA feet – 2		O WATI	,	WELL CAPAC feet) X 0.16			gallons/foc	ot = 2.67		
							TV	v ті	IBING LENGTH						
	t if applicable)	JRGE. TEQU			allons + (ons/foot		feet		VUELL	gallons :	= gallons		
	IMP OR TUBIN				3	PURGIN	IG		PURGING			OTAL VOL	UME		
DEPTH IN	WELL (feet):	35	DEPTH IN	WELL (feet):	35	INITIATE	ED AT: 1	1120	ENDED AT:	1138	P	URGED (g T	allons): 4.5		
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COI circle) بسلمر <u>or</u> م	os/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation		BIDITY TUs)	ORP (mV)	ODOR (describe)		
1129	2.25	2.25	.25	30.02	6.92	12.54	1.4	45	3.52	2	25	-99			
1132	1135 .75 3.75 .25 30.04 7.01 12.51 1.48 3.55 25 -94														
1135	1135 .75 3.75 .25 30.04 7.01 12.51 1.48 3.55 25 -94 1138 .75 4.5 .25 30.04 7.02 12.53 1.48 3.58 26 -94														
1138															
	1138 .75 4.5 .25 30.04 7.02 12.53 1.48 3.58 26 -94														
	PACITY (Gallon							= 0.37; / 16'' = 0.0		5" = 1.0			12 " = 5.88 5/8 " = 0.016		
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F	Pump; E	SP = Electric	Submer	sible Pur	mp; PP = P	eristaltic	Pump;	0 = 01	ther (Specify)		
					SAMP	LING DA	٩ΤΑ								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adha		Ξ(S):			SAMPLING INITIATED A	T:1138		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	35		TUBING MATERIAL C	ODE: PE				FILTERED: Y			FILTER SI	ZE: μm		
FIELD DEC	CONTAMINATIO	ON: PUM	P <mark>Y</mark> N	I	TUBING	Y <mark>N (re</mark>	eplaced)		DUPLICATE:	<mark>۲</mark>	<mark>(</mark>	N			
-			TION			RESERVATIO			INTEND			IPLING IPMENT	SAMPLE PUMP FLOW RATE		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		FOTAL VOL D IN FIELD (1		FINAL pH	METHO			ODE	(mL per minute)		
		SEE	CHAIN	OF CUS	TODY										
MW-5	3	AG	40ml	HCI		Prepres			VPH		6	BP	200		
MW-5	1	AG	1L	HCI		prepres			EPH		6	BP	500		
MW-5D	3	AG	40ml	HCI		Prepres			VPH		1	BP	200		
MW-5D	1	AG	1L	HCI		prepres			EPH		ł	BP	500		
REMARKS															
MATERIAL		AG = Amber (= Clear Glass;	PE = Poly				ene; S = Silico	-			other (Specify)		
SAMPLING	G EQUIPMENT			eristaltic Pump; se Flow Perista			Bladder Method		ESP = Electi Gravity Drain);		ersible F Other (Sp				

SITE NAME: MA	ΑF F-1				SI LO	ΓΕ ICATION: Aι	ugusta, I	МТ							
WELL NO:	MW-6			SAMPLE	ID: MW-6		0			DATE: 5/	15/2019	9			
					PURG	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET	i ER (inches):		LL SCREEN I PTH: 25.2	NTERVAL	S	TATIC D O WATE	EPTH R (feet): 27.80			E PUMP TY LER: BP	/PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT = (4		PTH – STA ⁻ feet – 2		ΓΟ WATE	,	WELL CAPACI feet) X 0.16		9	gallons/foc	ot = 2.78		
EQUIPME		JRGE: 1 EQU	IPMENT VOL	= PUMP VOL	UME + (TUB	ING CAPACI	ITY)	κ τι	JBING LENGTH) + FLOW	CELL	VOLUME			
	t if applicable)				allons + (ons/foot)		feet)			gallons	= gallons		
	JMP OR TUBIN WELL (feet):	G 35		/IP OR TUBINO WELL (feet):		PURGIN	IG ED AT: 1	1155	PURGING ENDED AT:	1213		OTAL VOL URGED (g	UME allons): 4.5		
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COI (circle µmho <u>or</u> µ	units) s/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBI (NTU		ORP (mV)	ODOR (describe)		
1204	3	2.25	.25	30.25	8.05	11.98	0.9	88	4.21	16	6	-25			
1207	1210 .75 3.75 .25 30.27 8.11 11.94 0.986 4.14 15 -26														
1210															
1213															
	1213 .75 4.5 .25 30.27 8.11 11.90 0.986 4.12 15 -28														
	PACITY (Gallon NSIDE DIA. CAI							= 0.37; 16" = 0.0		5" = 1.02; 0.006;	; 6" 1/2" = (12" = 5.88 5/8" = 0.016		
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder I	Pump; E	SP = Electric	Submer	sible Pur	mp; PP = Pe	eristaltic P	Pump;	O = O	ther (Specify)		
					-	LING DA	ATA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adk		E(S):			SAMPLING	T:1213		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	35		TUBING MATERIAL C	ODE: PE				-FILTERED: Y on Equipment Ty			FILTER S	ZE: μm		
FIELD DE	CONTAMINATIO	ON: PUM	P <mark>Y</mark> N	I	TUBING	Y <mark>N (r</mark>	<mark>eplaced</mark>)		DUPLICATE:	Y		N			
SAM SAMPLE	PLE CONTAINE #	MATERIAL		PRESERVAT	SAMPLE PR	ESERVATIC		FINAL	INTENDI ANALYSIS A	ND/OR	EQUI	PLING PMENT	Sample Pump Flow Rate		
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (pН	METHO	D	CC	DDE	(mL per minute)		
		SEE	CHAIN	OF CUS	TODY										
MW-6	3	AG	40ml	HCI		Prepres			VPH		E	3P	200		
MW-6	1	AG	1L	HCI		prepres			EPH		E	3P	500		
REMARKS	S:														
MATERIA		AG = Amber (,	Clear Glass;	PE = Poly				ene; S = Silico	-	= Teflon	,	ther (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Perista			Bladder		ESP = Electr Gravity Drain);		rsible P ther (Sp				

SITE NAME: MA	AF F-1					TE DCATION: AL	uqusta,	МТ							
WELL NO:	MW-7			SAMPLE	ID: MW-7		<u> </u>			DATE: 5	/15/2019	9			
					PURC	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET	ER (inches):		LL SCREEN PTH: 25.2		5	STATIC D	EPTH R (feet): 39.61			E PUMP TY LER: BP	(PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT = (4		PTH – STA feet – :		FO WAT	,	WELL CAPACI eet) X 0.16		ç	gallons/foo	t = 0.89		
							ITV	χ τι	JBING LENGTH)						
	t if applicable)	UNCE. I EQU			allons + (ons/foot		feet)			gallons	= gallons		
		IG 43				PURGIN		4005	PURGING ENDED AT:	4004			UME Jallons): 2.25		
IME	WELL (feet): VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE	WELL (feet): DEPTH TO WATER	pH (standard	TEMP. (°C)	CO (circle	DND. e units) os/cm	DISSOLVED OXYGEN (circle units)	TURB	BIDITY Us)	ORGED (g ORP (mV)	ODOR		
	(gallons)	(gallons)	(gpm)	(feet)	units)	(0)		<mark>ıS/cm</mark>	mg/L or % saturation	(00)	()	(00001120)		
1228	.75	.75	.25	42.62	7.00	11.65	0.1	112	8.56	1	0	120			
1231	1231 .75 1.5 .25 43.93 7.05 11.42 0.110 8.59 10 121 1234 .75 2.25 .25 43.95 7.01 11.41 0.110 8.60 10 121														
1234	1234 .75 2.25 .25 43.95 7.01 11.41 0.110 8.60 10 121														
	1234 .75 2.25 .25 43.95 7.01 11.41 0.110 8.60 10 121														
	1234 .75 2.25 .25 43.95 7.01 11.41 0.110 8.60 10 121														
	Image: Second														
	PACITY (Gallor NSIDE DIA. CA							' = 0.37; 5 /16" = 0.0		5" = 1.02 .006;	2; 6" 1/2" = (12" = 5.88 5/8" = 0.016		
PURGING		CODES: B	= Bailer;	BP = Bladder I	17	SP = Electric		rsible Pur	mp; PP = Pe	eristaltic I	Pump;	O = O	ther (Specify)		
					-		AIA								
	BY (PRINT) / A on / EMR	AFFILIATION:		SAMPLER(S) K. Adh		E(S):			SAMPLING	Г:1234		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	43		TUBING MATERIAL C	ODE: PE				-FILTERED: Y on Equipment Ty	<mark>N</mark> pe:		FILTER S	IZE: μm		
FIELD DE	CONTAMINATI	ON: PUM	P <mark>Y</mark> N		TUBING	Y <mark>N (r</mark>	eplaced)	DUPLICATE:	Y	r	N			
SAM	PLE CONTAINE	ER SPECIFICA MATERIAL		PRESERVAT		RESERVATIO	N	FINAL	INTENDE ANALYSIS AI		EQUI	PLING PMENT	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (mL)	pH	METHO	D	CO	DDE	(mL per minute)		
		SEE	CHAIN	OF CUS	TODY										
MW-7	3	AG	40ml	HCI		Prepres			VPH		E	ЗP	200		
MW-7	1	AG	1L	HCI		prepres			EPH		E	3P	500		
REMARKS	: Well began to	purge dry so E	MR collected	the sample pri	or to achievir	ng equilibrium	1				<u> </u>				
MATERIA		AG = Amber (,	Clear Glass;	-	yethylene;		olypropyl			= Teflon		Other (Specify)		
SAMPLIN	G EQUIPMENT			ristaltic Pump; e Flow Perista				r Pump; I (Tubing	ESP = Electr Gravity Drain);		ersible P Other (Sp				

SITE NAME: MA	AF F-1				SI LO	TE CATION: AI	ugusta.	мт							
WELL NO:				SAMPLE	ID: MW-8		<u> </u>			DATE: 5/	15/2019	9			
					PURG	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET	ER (inches):		LL SCREEN PTH: 25.55	INTERVAL	S	TATIC D O WATE	EPTH R (feet): 34.90			E PUMP TY LER: BP	/PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT = (4		PTH – STA feet –		TO WAT	,	WELL CAPACI feet) X 0.16			gallons/fo	ot = 1.70		
				= PLIMP VOI	UME + (TUB	ING CAPAC	ITY	х ті	JBING LENGTH)	+ FLOW	CELLA				
	t if applicable)				allons + (ons/foot		feet)		OLLL	gallons	= gallons		
INITIAL PL	JMP OR TUBIN	G	FINAL PUN		,	PURGIN		~	PURGING	•	Т	OTAL VOL	5		
	WELL (feet):	40		WELL (feet):			ED AT:	1248	ENDED AT:	1300		URGED (g			
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle μmho	ND. e units) ps/cm <mark>S/cm</mark>	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBI (NTU		ORP (mV)	ODOR (describe)		
1254	1.5	1.5	.25	40.90	7.18	9.65	0.2	265	8.54	35	5	-75			
1257	.75	2.25	.25	41.98	7.18	9.69	0.2	265	8.30	33	3	-70			
1300 .75 3 0.25 42.99 7.19 9.70 0.266 8.25 32 -70															
	1300 .75 3 0.25 42.99 7.19 9.70 0.266 8.25 32 -70														
	1300 .75 3 0.25 42.99 7.19 9.70 0.266 8.25 32 -70														
	PACITY (Gallon							= 0.37; / 16" = 0.		5" = 1.02; .006;	6" 1/2" = (12 " = 5.88 5/8 " = 0.016		
PURGING	EQUIPMENT O	CODES: B	= Bailer;	BP = Bladder F		SP = Electric		sible Pur	mp; PP = Pe	eristaltic P	'ump;	O = O	ther (Specify)		
					-	LING D	ΑΤΑ								
	BY (PRINT) / A SON / EMR	AFFILIATION:		SAMPLER(S) K. Adh		E(S):			SAMPLING INITIATED AT	Г:1300		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	43		TUBING MATERIAL C	ODE: PE				FILTERED: Y	N De:		FILTER S	ZE: μm		
	CONTAMINATIO		P <mark>Y</mark> N	l	TUBING	Y <mark>N (r</mark>	eplaced)		DUPLICATE:	Y		N			
	PLE CONTAINE		TION		SAMPLE PR		ON		INTENDE ANALYSIS AI			PLING PMENT	SAMPLE PUMP FLOW RATE		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD ((mL)	FINAL pH	METHO				(mL per minute)		
		SEE	CHAIN (OF CUS	TODY										
MW-8	3	AG	40ml	HCI		Prepres			VPH		E	3P	200		
MW-8	1	AG	1L	HCI		prepres			EPH		E	3P	500		
REMARKS	S: Well has very	low recharge. E	EMR sampled	prior to equilib	prium to ensur	re well did no	ot pump c	dry.							
MATERIA	L CODES:	AG = Amber C	Blass; CG =	= Clear Glass;	PE = Poly			olypropyl			Teflon		ther (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Perista	B = Bai Itic Pump;		 Bladder Method 		ESP = Electr Gravity Drain);		rsible P ther (Sp				

SITE NAME: MA	AF F-1				SI	TE DCATION: Au	qusta.	МТ							
WELL NO:				SAMPLE	ID: MW-9		<u> </u>			DATE: 5	/15/2019	9			
<u> </u>					PURC	SING DA	ТА								
WELL DIAMETER	R (inches): 2	TUBING DIAMET) ER (inches):		L SCREEN TH: 25	INTERVAL feet to 45 fee		TATIC D O WATE	EPTH R (feet): 34.55			EPUMP TY LER: BP	PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT) = (TH – STA feet– 34		O WATI	,	WELL CAPAC et) X 0.16	ITY	gal	lons/foot	= 1.67		
EQUIPME	NT VOLUME PI t if applicable)	JRGE: 1 EQU	IPMENT VOL	= PUMP VOL	UME + (TUB	ING CAPACI	TY 2	χ τι	JBING LENGTH) + FLOW	/ CELL \	/OLUME			
				•	llons + (ns/foot 2	Х	feet) +		gallons =	•		
	JMP OR TUBIN WELL (feet):	G 40		MP OR TUBING		PURGIN		1315	PURGING ENDED AT:	1330		OTAL VOL URGED (g	UME allons): 3.75		
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	(circle µmhc		DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURB (NT	BIDITY Us)	ORP (mV)	ODOR (describe)		
1321	1.5	1.5	.25	36.78	7.50	11.65	1.:	32	3.65	8	5	-122			
1324	1327 .75 3 .25 36.81 7.52 11.89 1.35 3.70 89 -121														
1327	1327 .75 3 .25 36.81 7.52 11.89 1.35 3.70 89 -121 1330 .75 3.75 .25 36.81 7.51 11.90 1.35 3.69 90 -121														
1330															
	1330 .75 3.75 .25 36.81 7.51 11.90 1.35 3.69 90 -121														
	PACITY (Gallon NSIDE DIA. CAI							= 0.37; / 16" = 0.0		5" = 1.02).006;			12" = 5.88 5/8" = 0.016		
PURGING		ODES: B	= Bailer;	BP = Bladder P		SP = Electric		sible Pur	mp; PP = Pe	eristaltic I	Pump;	0 = Ot	her (Specify)		
						LING DA	ATA								
SAMPLED Kaitlin A	BY (PRINT) / A dkisson	FFILIATION:		SAMPLER(S) K. Adha		E(S):			SAMPLING INITIATED A	T:1330		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	40		TUBING MATERIAL CO	DDE: PE				FILTERED: Y			FILTER SI	ZE:μm		
FIELD DEG	CONTAMINATIO	ON: PUM	P <mark>Y</mark> N	1	TUBING	Y <mark>N (re</mark>	eplaced)		DUPLICATE:	Y		N			
	PLE CONTAINE		TION			RESERVATIO			INTENDI ANALYSIS A			PLING PMENT	SAMPLE PUMP FLOW RATE		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		fotal vol D in Field (1		FINAL pH	METHO			DDE	(mL per minute)		
		SEE	CHAIN	OF CUST	FODY										
MW-9	3	AG	40ml	HCI		Prepres			VPH		E	3P	200		
MW-9	1	AG	1L	HCI		prepres			EPH		E	3P	500		
REMARKS	3:														
MATERIA	L CODES:	AG = Amber (Glass; CG :	= Clear Glass;	PE = Poly	ethylene;	PP = Po	olypropyl	ene; S = Silico	one; T	= Teflon	; 0 = 0	ther (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Peristal	B = Bai tic Pump;		Bladder Method		ESP = Electi Gravity Drain);		ersible P Other (Sp	1.7			

SITE NAME: MA	λF F-1				SI LC	TE DCATION: AL	igusta,	МТ							
WELL NO:	MW-10			SAMPLE	ID: MW-10					DATE: 5	5/15/201	9			
					PURG	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET	i ER (inches):		L SCREEN TH: 29.2	INTERVAL feet to 49.2		STATIC D TO WATE	EPTH R (feet): 31.91			E PUMP TY ILER: BP	/PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT		TH – STA feet – 3		TAW OT		WELL CAPAC		ç	gallons/foo	t = 2.76		
gallons			,						,						
	NT VOLUME PU t if applicable)	JRGE: 1 EQU	IPMENT VOL		UME + (TUB Illons + (TY ons/foot		JBING LENGTH		V CELL	VOLUME	= gallons		
INITIAL PL	JMP OR TUBIN	G	FINAL PUI			PURGIN			PURGING	.) ·	Т	OTAL VOL	-		
	WELL (feet):	38		WELL (feet): 3		INITIATE		1345	ENDED AT:	1400			allons): 3.75		
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	(circle μmh	DND. e units) os/cm <mark>เS/cm</mark>	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation		BIDITY TUs)	ORP (mV)	ODOR (describe)		
1351	1.5	1.5	.25	33.21	7.25	11.56	1.	.52	1.25	5	55	12			
1354	1357 .75 3 .25 33.25 7.22 11.54 1.52 1.23 57 14														
1357															
1400															
WELL CAI TUBING IN	PACITY (Gallon ISIDE DIA. CAR	s Per Foot): 0 PACITY (Gal./F	.75" = 0.02; it.): 1/8" = 0	1" = 0.04; .0006; 3/16"				" = 0.37; 5/16" = 0.0		5" = 1.0	2; 6" 1/2" =		12 " = 5.88 5/8" = 0.016		
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder P	17	SP = Electric		rsible Pur	mp; PP = P	Peristaltic	Pump;	O = Ot	ther (Specify)		
						LING DA	ATA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adka		E(S):			SAMPLING INITIATED A	T:1400		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	38		TUBING MATERIAL CO	DDE: PE				FILTERED: Y			FILTER S	IZE:μm		
	CONTAMINATIO		P <mark>Y</mark> N		TUBING	Y <mark>N (re</mark>	eplaced		DUPLICATE	<i>.</i>	(N			
SAM	PLE CONTAINE	R SPECIFICA	TION		SAMPLE PF	RESERVATIO	N						SAMPLE PUMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (mL)	FINAL pH	ANALYSIS A METHO			PMENT ODE	FLOW RATE (mL per minute)		
		SEE	CHAIN	OF CUST	FODY										
MW-10	3	AG	40ml	HCI		Prepres			VPH		1	BP	200		
MW-10	1	AG	1L	HCI		prepres			EPH			BP	500		
REMARKS	:														
MATERIA	L CODES:	AG = Amber (Glass; CG	= Clear Glass;	PE = Poly	ethylene;	PP = P	olypropyl	ene; S = Silic	one; T	= Teflor	n; O = C	ther (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Peristal	B = Bai tic Pump;			er Pump; d (Tubing	ESP = Elect Gravity Drain);		ersible F Other (S				

NAME: MA	\F F-1				LC	CATION: Au	gusta, MT								
WELL NO:	MW-11			SAMPLE	ID: MW-11				DATE: 5/1	15/2019)				
					PURC	SING DA	TA								
WELL DIAMETER	R (inches): 2		€ FER (inches):		L SCREEN PTH: 25.5	INTERVAL feet to 45.8	5 STATIC E TO WATE	DEPTH ER (feet): 26.87			PUMP TY _ER: BP	PE			
	LUME PURGE: t if applicable)	1 WELL VOL	-UME = (TOT = (4		TH – STA feet – 2			WELL CAPAC eet) X 0.16		ga	allons/foot	= 2.98			
	NT VOLUME PU t if applicable)	JRGE: 1 EQU	IPMENT VOL		UME + (TUB allons + (TY X TI	UBING LENGTH		CELL V	/OLUME gallons =	gallons			
	JMP OR TUBIN WELL (feet):	G 35	-	MP OR TUBING	3	PURGIN		PURGING ENDED AT:	,						
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. (circle units) µmhos/cm <u>or</u> <mark>µS/cm</mark>	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBII (NTU		ORP (mV)	ODOR (describe)			
1421	1.5	1.5	.25	28.90	8.54	10.22	1.45	2.12	75	5	44				
1424	.75	2.25	.25	28.90	8.50	10.21	1.44	2.11	74	1	44				
1427															
1430															
	1430 .75 5.75 .25 20.90 6.51 10.25 1.55 2.10 76 42														
	PACITY (Gallon					6; 2 " = 0.10 1/4" = 0.002		4 " = 0.65; .004; 3/8" = 0	5" = 1.02; 0.006; 1	6 " = 0 1/ 2" = 0		12 " = 5.88 5/8" = 0.016			
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F		SP = Electric	Submersible Pu	mp; PP = P	eristaltic P	ump;	O = Ot	her (Specify)			
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)											
KAdkiss	on / EMR			K. Adha	issen			SAMPLING INITIATED A			SAMPLING				
PUMP OR DEPTH IN	TUBING WELL (feet):	35		TUBING MATERIAL CO	DDE: PE			-FILTERED: Y on Equipment Ty		F	FILTER SIZ	ZE: μm			
FIELD DEC	CONTAMINATIO	ON: PUM	P <mark>Y</mark> N	I	TUBING	Y <mark>N (re</mark>	placed)	DUPLICATE	: Y		N				
			TION					INTEND ANALYSIS A			PLING PMENT	SAMPLE PUMP FLOW RATE			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		FOTAL VOL D IN FIELD (r	FINAL nL) pH	METHO			DE	(mL per minute)			
		SEE	CHAIN	OF CUS	TODY										
MW-11	3	AG	40ml	HCI		Prepres		VPH		В	BP	200			
MW-11	1	AG	1L	HCI		prepres		EPH		В	3P	500			
REMARKS	:														
MATERIAI		AG = Amber (= Clear Glass;	PE = Poly		PP = Polypropy			Teflon;	,	ther (Specify)			
SAMPLING	G EQUIPMENT			eristaltic Pump; se Flow Perista	B = Bai Itic Pump;		Bladder Pump; Method (Tubing	ESP = Elect Gravity Drain);		rsible Pi her (Sp					

0.75

NAME: MA	\F F-1					CATION: Au	gusta, MT								
WELL NO:	MW-12			SAMPLE	ID: MW-12				DATE: 5/	/15/201	9				
					PURC	SING DA	TA								
WELL DIAMETER	R (inches): 2		G TER (inches):		L SCREEN TH: 20.0		90 STATIC	DEPTH ER (feet): 24.85			E PUMP TY ILER: BP	/PE			
	LUME PURGE: t if applicable)	1 WELL VO		AL WELL DEP	TH – STA feet –		O WATER) X	WELL CAPAC			gallons/foc	t = 2.4			
	NT VOLUME PU t if applicable)	JRGE: 1 EQU	JIPMENT VOL		UME + (TUB allons + (ΓΥ Χ Τ ns/foot X	UBING LENGTH		CELL	VOLUME	= gallons			
	IMP OR TUBIN WELL (feet):	G 30		MP OR TUBING	3	PURGIN		PURGING ENDED AT	,		OTAL VOL	, in the second s			
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. (circle units) μmhos/cm <u>or</u> μ <mark>S/cm</mark>	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURB	IDITY	ORP (mV)	ODOR			
1611	1.5	1.5	.25	25.74	8.05	10.68	1.66	1.25	54	4	30				
1614	.75	2.25	.25	25.79	8.02	10.84	1.65	1.19	5	0	31				
1617 .75 3 .25 25.74 8.03 10.84 1.62 1.15 49 30 1620 .75 .3.75 .25 .25 .4 8.03 10.84 1.62 1.15 49 .30															
1620															
	1020 .75 5.75 .25 25.74 6.02 10.65 1.05 1.14 49 50														
	PACITY (Gallon ISIDE DIA. CAR							4 " = 0.65; .004; 3/8" =		2; 6" 1/2" =		12" = 5.88 5/8" = 0.016			
PURGING		ODES: B	= Bailer;	BP = Bladder P			Submersible Pu	ımp; PP = F	Peristaltic F	Pump;	O = Ot	ther (Specify)			
						LING DA	TA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adha		E(S):		SAMPLING	T:1620		SAMPLIN ENDED A				
PUMP OR DEPTH IN	TUBING WELL (feet):	30		TUBING MATERIAL CO	DDE: PE			O-FILTERED: Y			FILTER SI	ZE:μm			
FIELD DEC	CONTAMINATIO	ON: PUN	1P <mark>Y</mark> N	1	TUBING	Y <mark>N (re</mark>	placed)	DUPLICATE	: Y	-	N				
SAMPLE			ATION								IPLING PMENT	SAMPLE PUMP FLOW RATE			
ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		fotal vol D in Field (n	nL) FINAL	METHO	DD	C	ODE	(mL per minute)			
		SEE	CHAIN	OF CUS	TODY										
MW-12	3	AG	40ml	HCI		Prepres		VPH		I	BP	200			
MW-12	1	AG	1L	HCI		prepres		EPH		I	BP	500			
REMARKS	: Sheen and od	or													
MATERIAL		AG = Amber	,	= Clear Glass;	PE = Poly		PP = Polypropy		,	= Teflor		ther (Specify)			
SAMPLING	EQUIPMENT			eristaltic Pump; se Flow Peristal	B = Bai Itic Pump;		Bladder Pump; Method (Tubing	ESP = Elect g Gravity Drain);		ersible F Other (Sp					

0.75

SITE NAME: MA	ΑF F-1				SI LO	TE DCATION: AL	ugusta, I	МТ							
WELL NO:	MW-13			SAMPLE	ID: MW-13		0			DATE: 5/	15/2019	9			
					PURG	SING DA	TA								
WELL DIAMETER	R (inches): 2	TUBING DIAMET	ER (inches):		LL SCREEN I PTH: 14			TATIC D O WATE	EPTH R (feet): 14.31			: PUMP TY LER: BP	/PE		
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT = (:		PTH – STA feet – 14.3		ΓΟ WATE	,	WELL CAPACI t) X 0.16	ΤY	gall	ons/foot	= 3.15		
								<u>и</u> ті	JBING LENGTH)						
	it if applicable)				allons + (ons/foot >		feet)		CELL	gallons :	= gallons		
	JMP OR TUBIN WELL (feet):	G 20		MP OR TUBINO WELL (feet):		PURGIN	IG ED AT: 1	1510	PURGING ENDED AT:	1522		OTAL VOL URGED (g			
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COl circle) pmho <u>or</u> م	ND. units) s/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBI (NTU	DITY	ORP (mV)	ODOR		
1513	.75	.75	.25	15.96	7.95	9.94	0.3	66	7.54	78	3	90			
1516	1519 .75 2.25 .25 16.0 7.98 10.03 0.369 7.58 80 86														
1519	1519 .75 2.25 .25 16.0 7.98 10.03 0.369 7.58 80 86 1522 .75 3 .25 16.0 7.99 10.02 0.370 7.60 80 87														
1522															
	1522 .75 3 .25 16.0 7.99 10.02 0.370 7.60 80 87														
	PACITY (Gallon NSIDE DIA. CAI							= 0.37; 16" = 0.		5" = 1.02; .006;	6" 1/2" = (12" = 5.88 5/8" = 0.016		
PURGING		ODES: B	= Bailer;	BP = Bladder I	^D ump; E	SP = Electric	Submer	sible Pur	mp; PP = Pe	eristaltic P	ump;	0 = Ot	her (Specify)		
					SAMP	LING DA	ATA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) K. Adka		E(S):			SAMPLING INITIATED AT	Г:1522		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet):	20		TUBING MATERIAL C	ODE: PE				FILTERED: Y	<mark>N</mark> pe:		FILTER SI	ZE:μm		
FIELD DE	CONTAMINATIO	ON: PUMI	P <mark>Y</mark> N		TUBING	Y <mark>N (r</mark>	<mark>eplaced</mark>)		DUPLICATE:	Y		N			
SAM	PLE CONTAINE #	R SPECIFICA MATERIAL	TION	PRESERVAT		RESERVATIC		FINAL	INTENDE ANALYSIS A			PLING PMENT	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (pH	METHO	D	CC	DDE	(mL per minute)		
		SEE	CHAIN	OF CUS	TODY										
MW-13	3	AG	40ml	HCI		Prepres			VPH		E	3P	200		
MW-13	1	AG	1L	HCI		prepres			EPH		E	3P	500		
REMARKS	3:														
MATERIA	L CODES:	AG = Amber 0	Blass; CG =	Clear Glass;	PE = Poly			,, ,,	ene; S = Silico	one; T =	Teflon	i; O = O	ther (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Perista			Bladder Method		ESP = Electr Gravity Drain);		rsible P her (Sp				

SITE NAME: MA	\F F-1					TE DCATION: Au	gusta,	MT							
WELL NO:	MW-14			SAMPLE	SAMPLE ID: MW-14						DATE: 5/15/2019				
PURGING DATA															
WELL DIAMETER	R (inches): 2		WELL SCREEN INTERVAL STATIC DEPTH 16 DEPTH: 20 feet to 35 TO WATER (feet)					PURGE PUMP TYPE 35 OR BAILER: BP							
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (35 feet - 25.35 feet) X 0.16 gallons/foot = 1.54 gallons = (35 feet - 25.35 feet) X 0.16 gallons/foot = 1.54															
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME															
(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons															
	JMP OR TUBIN WELL (feet):	G 30		FINAL PUMP OR TUBING DEPTH IN WELL (feet): 32			PURGING INITIATED AT: 1445			PURGING ENDED AT: 1454			TOTAL VOLUME PURGED (gallons): 2.25		
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle μmho	ND. units) os/cm <mark>S/cm</mark>	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation		TURBIDITY (NTUs)		ODOR (describe)		
1448	.75	.75	.25	29.87	9.21	10.21	1.	05	3.24	85		40			
1451	.75	1.5	.25	31.25	8.45	10.20	1.	02	3.20	84		46			
1454	.75	2.25	.25	31.98	8.42	10.15	1.	00	3.19	81		39			
	PACITY (Gallon ISIDE DIA. CAI							= 0.37; / 16" = 0.0		5" = 1.02; .006; 1		,	12" = 5.88 5/8" = 0.016		
PURGING		ODES: B	= Bailer;	BP = Bladder F	17	SP = Electric		sible Pur	mp; PP = Pe	eristaltic Pu	imp;	0 = Ot	her (Specify)		
					-	LING DA	ATA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) SIGNATURE(S): K. Adhissen				SAMPLING INITIATED AT:1454			SAMPLING ENDED AT:1456				
PUMP OR DEPTH IN	TUBING WELL (feet):	30		DDE: PE		FIELD-FILTERED: Y N Filtration Equipment Type:					FILTER SI	ZE:μm			
FIELD DEC	CONTAMINATIO	ON: PUMI	P <mark>Y</mark> N	1	TUBING	Y <mark>N (re</mark>	eplaced)	1	DUPLICATE:	Y		N			
SAM SAMPLE		A SPECIFICA	SAMPLE PRESERVATION PRESERVATIVE TOTAL VOL FINAL				FINAL	ANALYSIS AND/OR E			PLING PMENT	SAMPLE PUMP FLOW RATE			
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (mL) pH		METHOD		CODE		(mL per minute)			
		SEE	CHAIN	OF CUS	FODY										
MW-13	3	AG	40ml	HCI		Prepres			VPH		BP		200		
MW-13	1	AG	1L	HCI		prepres	\$ <u></u>		EPH		BP		500		
		-													
REMARKS: Well was not recharging well. Sampled before well could pump dry															
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)															
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)															

SITE SITE LOCATION: Augusta, MT															
WELL NO:	MW-15		SAMPLE	SAMPLE ID: MW-15							DATE: 5/15/2019				
PURGING DATA															
WELL DIAMETER	R (inches): 2	3/16 DEF	WELL SCREEN INTERVAL STATIC DEPTH					PURGE PUMP TYPE OR BAILER: BP							
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (35 feet - 21.95 feet) X 0.16 gallons/foot = 2.08															
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME															
(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons															
	JMP OR TUBIN WELL (feet):	G 30	FINAL PUMP OR TUBING DEPTH IN WELL (feet): 30			PURGING INITIATED AT: 1535			PURGING ENDED AT:	TOTAL VOLUME PURGED (gallons): 3					
IME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	CON (circle) بسامه <u>or</u> م	units) s/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBI (NTU		ORP (mV)	ODOR (describe)		
1538	.75	.75	0.25	23.54	7.54	10.98	1.2	25	4.12	40)	100			
1541	.75	1.5	.25	23.58	7.60	11.02	1.2	24	4.15	29	9	98			
1544	.75	2.25	.25	23.58	7.58	10.97	1.2	22	4.15	32	2	99			
1547	.75	3	.25	23.58	7.59	10.98	1.2	20	4.14	32	2	98			
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016														
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder I	^D ump; E	SP = Electric	Submer	sible Pur	mp; PP = Pe	eristaltic P	ump;	0 = Ot	ther (Specify)		
					SAMP	LING DA	ATA								
	BY (PRINT) / A on / EMR	FFILIATION:		SAMPLER(S) SIGNATURE(S): K. Adkissen				SAMPLING INITIATED AT:1547			SAMPLING ENDED AT:1549				
PUMP OR DEPTH IN	TUBING WELL (feet):	30						-FILTERED: Y <mark>Ν</mark> FILTER SIZE:μm on Equipment Type:							
FIELD DEG	CONTAMINATIO	ON: PUMI	P <mark>Y</mark> N		TUBING	Y <mark>N (r</mark>	<mark>eplaced</mark>)		DUPLICATE:	Y		N			
SAM SAMPLE	PLE CONTAINE	R SPECIFICA	TION VOLUME	SAMPLE PRESERVATION PRESERVATIVE TOTAL VOL FINAL								PLING PMENT	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS	CODE	USED ADDED IN FIELD (mL) pH					METHOD			DDE	(mL per minute)			
SEE CHAIN OF CUSTODY															
MW-13	3	AG	40ml	HCI		Prepres			VPH		BP		200		
MW-13	1	AG	1L	HCI		prepres			EPH		BP		500		
REMARKS:															
	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)														
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)															

APPENDIX C

Laboratory Analytical Data

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

EMR Environmental 6418 College Blvd Overland Park KS 66221

Report Date: August 06, 2019 09:51

Project: MAF-F-1

Account #: 44192 Group Number: 2044467 SDG: EMR07 State of Sample Origin: MT

Electronic Copy To EMR Environmental Electronic Copy To EMR Environmental Attn: Jeff Humenik Attn: Kaitlin Adkisson

Respectfully Submitted,

Barbara Weyardt

Barbara A. Weyandt Specialist

(717) 556-7264

Previous versions of this report were generated on: 06/13/2019 20:12 07/11/2019 15:41

To view our laboratory's current scopes of accreditation please go to <u>https://www.eurofinsus.com/environment-</u> <u>testing/laboratories/eurofins-lancaster-laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-</u> <u>environmental/</u>. Historical copies may be requested through your project manager.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
TB Water	<u>Date/Time</u> 05/15/2019	1059979
MW-1 Grab Groundwater	05/15/2019 10:04	1059980
MW-2 Grab Groundwater	05/15/2019 10:38	1059981
MW-4 Grab Groundwater	05/15/2019 11:10	1059982
MW-5 Grab Groundwater	05/15/2019 11:42	1059983
MW-5D Grab Groundwater	05/15/2019 11:42	1059984
MW-6 Grab Groundwater	05/15/2019 12:15	1059985
MW-7 Grab Groundwater	05/15/2019 12:36	1059986
MW-8 Grab Groundwater	05/15/2019 13:02	1059987
MW-9 Grab Groundwater	05/15/2019 13:39	1059988
MW-10 Grab Groundwater	05/15/2019 14:02	1059989
MW-11 Grab Groundwater	05/15/2019 14:32	1059990
MW-14 Grab Groundwater	05/15/2019 14:56	1059991
MW-13 Grab Groundwater	05/15/2019 15:24	1059992
MW-15 Grab Groundwater	05/15/2019 15:49	1059993
MW-12 Grab Groundwater	05/15/2019 16:22	1059994

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: MAF-F-1 ELLE Group #: 2044467

General Comments:

All analyses have been performed in accordance with DOD QSM Version 5.1.1 unless otherwise noted below.

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

MA DEP VPH, Rev. 2.1 2/2018, GC Petroleum Hydrocarbons

Sample #s: 1059988, 1059989, 1059994

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

Sample #s: 1059991

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

Sample #s: 1059993

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

Sample #s: 1059983, 1059984, 1059987

The recovery for a target analyte(s) in the Laboratory Control

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Spike(s) is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

Batch #: 19142B08A (Sample number(s): 1059979-1059982)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1059980, 1059980DL, 1059981

Batch #: 19143B08A (Sample number(s): 1059983-1059984, 1059987-1059989, 1059991, 1059993-1059994)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD were below the acceptance window: C9-C12 Aliphatic Hydrocarbons

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1059988, 1059989, 1059991, 1059993, 1059994, 1059994DL

MA EPH 5/04, GC Petroleum Hydrocarbons

Sample #s: 1059980, 1059981, 1059988, 1059989, 1059994

The recovery for a target analyte(s)and surrogate(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

Sample #s: 1059993

The recovery for a target analyte(s)and surrogate(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Sufficient sample was not available to repeat the analysis.

The following analytes were manually integrated: C11 to C22 Aromatics, Unadjusted C11 - C22 Aromatics

Batch #: 191510004A (Sample number(s): 1059980-1059981, 1059988-1059989, 1059993-1059994)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD were below the acceptance window: Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene, 2-Methylnaphthalene, C9 to C18 Aliphatics, Unadjusted C11 - C22 Aromatics

The relative percent difference(s) for the following analyte(s) in the LCS/LCSD were outside acceptance windows: Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene, 2-Methylnaphthalene, C9 to C18 Aliphatics, C19 to C36 Aliphatics, Unadjusted C11 - C22 Aromatics

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) LCS

MT DEQ, GC Petroleum Hydrocarbons

Sample #s: 1059981, 1059982, 1059983, 1059984, 1059985

The following analytes were manually integrated: MTEPH Screen Water

Sample #s: 1059986

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary.

Sample #s: 1059987, 1059990, 1059991, 1059992, 1059993

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

The response for a target analyte(s) in the continuing calibration verification standard is outside the QC acceptance limits high. The following action was taken: The analysis was repeated and the continuing calibration verification standard bracketing the sample on the second trial is also outside the acceptance limits high. This effect is attributed to the sample matrix and the data is reported.

Sample #s: 1059980, 1059988, 1059989, 1059994

The response for a target analyte(s) in the continuing calibration verification standard is outside the QC acceptance limits high. The following action was taken: The analysis was repeated and the continuing calibration verification standard bracketing the sample on the second trial is also outside the acceptance limits high. This effect is attributed to the sample matrix and the data is reported.

The following analytes were manually integrated: MTEPH Screen Water

Batch #: 191420017A (Sample number(s): 1059980-1059994)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) LCS, LCSD

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1059986

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	TB Water		EMR Environmental			
	MAF F-1			ELLE Sample #: ELLE Group #:	GW 1059979 2044467	
Project Name:	MAF-F-1			Matrix: Water		
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 EMR07-01TB					
		Detection	Limit of	Limit of	• .:	

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC PetroleumMA DEPHydrocarbons2/2018		VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	N.D.	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	Ethylbenzene	100-41-4	N.D.	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	N.D.	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19142B08A	05/23/2019 05:26	Mark Makowiecki	1			

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-1 Grab Groundwater MAF F-1				
Project Name:	MAF-F-1				
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 10:04 EMR07-02				

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059980 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
		VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
-	carbons 2/2018							
14079	Benzene	71-43-2	1,430 E	4.00	8.00	10.0		2
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	12,600 E	100	200	400		2
14079	Unadjusted C5-C8 Aliphatics	n.a.	15,000 E	100	200	400		2
14079	C9-C10 Aromatic Hydrocarbons	n.a.	9,380 E	40.0	80.0	400		2
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	19,900 E	100	200	400		2
14079	Unadjusted C9-C12 Aliphatics	n.a.	36,500 E	100	200	400		2
14079	Ethylbenzene	100-41-4	1,770 E	4.00	8.00	10.0		2
14079	Methyl t-butyl ether	1634-04-4	N.D.	4.00	8.00	10.0		2
14079	Naphthalene	91-20-3	635 E	6.00	12.0	20.0		2
14079	Total Purgeable Hydrocarbons	n.a.	51,500 E	200	200	400		2
14079	Toluene	108-88-3	1,030 E	4.00	8.00	10.0		2
14079	o-Xylene	95-47-6	2,230 E	4.00	8.00	10.0		2
14079	m,p-Xylenes	179601-23-1	3,180 E	10.0	20.0	20.0		2
	ID: DL							
14079	Benzene	71-43-2	1,170	40.0	80.0	100		20
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	7,990	1.000	2,000	4.000		20
14079	Unadjusted C5-C8 Aliphatics	n.a.	9,970	1.000	2,000	4.000		20
14079	C9-C10 Aromatic Hydrocarbons	n.a.	7,700	400	800	4.000		20
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	10,100	1.000	2,000	4.000		20
14079	Unadjusted C9-C12 Aliphatics	n.a.	28,000	1.000	2,000	4.000		20
14079	Ethylbenzene	100-41-4	1,440	40.0	80.0	100		20
14079	Methyl t-butyl ether	1634-04-4	N.D.	40.0	80.0	100		20
14079	Naphthalene	91-20-3	619	60.0	120	200		20
14079	Total Purgeable Hydrocarbons	n.a.	38,000	2.000	2,000	4.000		20
14079	Toluene	108-88-3	813	40.0	80.0	100		20
14079	o-Xylene	95-47-6	1,880	40.0	80.0	100		20
14079	m,p-Xylenes	179601-23-1	6,900	100	200	200		20
GC Pe	troleum MA EPH	5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
	carbons							
05331	Acenaphthene	83-32-9	N.D.	12	23	38		20
05331	Acenaphthylene	208-96-8	N.D.	13	27	38		20
05331	Anthracene	120-12-7	N.D.	12	23	38		20
05331	Benzo(a)anthracene	56-55-3	N.D.	13	27	38		20
05331	Benzo(a)pyrene	50-32-8	N.D.	12	23	38		20
05331	Benzo(b)fluoranthene	205-99-2	N.D.	12	23	38		20
05331	Benzo(g,h,i)perylene	191-24-2	N.D.	12	23	38		20
05331	Benzo(k)fluoranthene	207-08-9	N.D.	29	58	77		20
05331	Unadjusted C11 - C22 Aromatics	n.a.	2,900	770	770	1,500		20
05331	C11 to C22 Aromatics	n.a.	1,800	770	770	1.500		20

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-1 Grab Groundwater MAF F-1				
Project Name:	MAF-F-1				
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 10:04 EMR07-02				

Analysis Report

REVISED

EMR Environmental							
ELLE Sample #:	GW 1059980						
ELLE Group #:	2044467						
Matrix: Groundwater							

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA E	PH 5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05331	C19 to C36 Aliphatics	n.a.	N.D.	240	240	380		5
05331	C9 to C18 Aliphatics	n.a.	14,000	140	140	290		5
05331	Chrysene	218-01-9	N.D.	9.6	19	38		20
05331	Dibenzo(a,h)anthracene	53-70-3	64	9.6	19	38		20
05331	Fluoranthene	206-44-0	N.D.	9.6	19	38		20
05331	Fluorene	86-73-7	N.D.	12	23	38		20
05331	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	12	23	38		20
05331	2-Methylnaphthalene	91-57-6	410	12	23	38		20
05331	Naphthalene	91-20-3	580	12	23	38		20
05331	Total Petroleum Hydrocarbons	n.a.	16,000	1.000	1.000	2.000		20
05331	Phenanthrene	85-01-8	N.D.	12	23	38		20
05331	Pyrene	129-00-0	N.D.	96	190	230		20
Spike	recovery for a target analyte(s)and e(s) is outside the QC acceptance I mary. Sufficient sample was not av rsis.	imits as noted on the QC						
	troleum MT D	EQ	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	Carbons MTEPH Screen Water							
05968			65,000 E	300	300	300	1000	1

verification standard is outside the QC acceptance limits high. The following action was taken:

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial

is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19142B08A	05/23/2019 06:08	Mark Makowiecki	2
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19142B08A	05/23/2019 06:08	Mark Makowiecki	2
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	2-DL	19142B08A	05/23/2019 06:49	Mark Makowiecki	20
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 22:35	Heather E Williams	20
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 23:14	Heather E Williams	5
05331	MA-EPH Water DOD	MA EPH 5/04	1-1ST	191510004A	06/06/2019 22:35	Heather E Williams	20
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 13:52	Timothy M Emrick	1
07326	EPH Water Extraction	MA DEP EPH 5/04	1	191510004A	05/23/2019 01:45	Sherry L Morrow	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1

*=This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description:	MW-1 Grab Groundwater	EMR Environmental		
	MAF F-1	ELLE Sample #: 0	GW 1059980	
		ELLE Group #: 2	2044467	
Project Name:	MAF-F-1	Matrix: Groundwater		
Submittal Date/Time:	05/17/2019 10:20			
Collection Date/Time:	05/15/2019 10:04			
SDG#:	EMR07-02			

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
00497	Silica Gel Fractionation	SW-846 3630C modified	1	191510004A	06/02/2019 12:48	Christine E Gleim	1		

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-2 Grab Groundwater MAF F-1					
Project Name:	MAF-F-1					
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 10:38 EMR07-03					

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059981 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result		Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
		VPH, Rev. 2.1	ug/l		ug/l	ug/l	ug/l	ug/l	
-	carbons 2/2018	74 40 0	0.040	-	4.00	0.00	10.0		0
14079	Benzene	71-43-2	2,010	E	4.00	8.00	10.0		2
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	3,860	E	100	200	400		2 2
14079	Unadjusted C5-C8 Aliphatics	n.a.	6,510	E	100	200	400		
14079	C9-C10 Aromatic Hydrocarbons	n.a.	2,550	E	40.0	80.0	400		2
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	4,210	E	100	200	400		2
14079	Unadjusted C9-C12 Aliphatics	n.a.	10,900	E	100	200	400		2
14079	Ethylbenzene	100-41-4	821	E	4.00	8.00	10.0		2
14079	Methyl t-butyl ether	1634-04-4	N.D.		4.00	8.00	10.0		2
14079	Naphthalene	91-20-3	226	-	6.00	12.0	20.0		2
14079	Total Purgeable Hydrocarbons	n.a.	17,400	E	200	200	400		2
14079	Toluene	108-88-3	640	E	4.00	8.00	10.0		2
14079	o-Xylene	95-47-6	661	E	4.00	8.00	10.0		2
14079	m,p-Xylenes	179601-23-1	2,670	E	10.0	20.0	20.0		2
	I ID: DL								
14079	Benzene	71-43-2	1,660		40.0	80.0	100		20
14079	C5-C8 Aliphatic Hydrocarbons n.a.		2,780	J	1.000	2.000	4.000		20
14079	Unadjusted C5-C8 Aliphatics	n.a.	4,950		1.000	2.000	4.000		20
14079	C9-C10 Aromatic Hydrocarbons	n.a.	2,010	J	400	800	4.000		20
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	3,030	J	1.000	2,000	4.000		20
14079	Unadjusted C9-C12 Aliphatics	n.a.	8,520		1.000	2.000	4.000		20
14079	Ethylbenzene	100-41-4	664		40.0	80.0	100		20
14079	Methyl t-butyl ether	1634-04-4	N.D.		40.0	80.0	100		20
14079	Naphthalene	91-20-3	211		60.0	120	200		20
14079	Total Purgeable Hydrocarbons	n.a.	13,500		2,000	2,000	4.000		20
14079	Toluene	108-88-3	518		40.0	80.0	100		20
14079	o-Xylene	95-47-6	562		40.0	80.0	100		20
14079	m,p-Xylenes	179601-23-1	2,250		100	200	200		20
GC Pe	troleum MA EPH	5/04	ug/l		ug/l	ug/l	ug/l	ug/l	
lydro	carbons								
05331	Acenaphthene	83-32-9	N.D.		2.9	5.7	9.6		5
05331	Acenaphthylene	208-96-8	N.D.		3.4	6.7	9.6		5
05331	Anthracene	120-12-7	N.D.		2.9	5.7	9.6		5
05331	Benzo(a)anthracene	56-55-3	N.D.		3.4	6.7	9.6		5
05331	Benzo(a)pyrene	50-32-8	N.D.		2.9	5.7	9.6		5
05331	Benzo(b)fluoranthene	205-99-2	N.D.		2.9	5.7	9.6		5
05331	Benzo(g,h,i)perylene	191-24-2	N.D.		2.9	5.7	9.6		5
05331	Benzo(k)fluoranthene	207-08-9	N.D.		7.2	14	19		5
05331	Unadjusted C11 - C22 Aromatics	n.a.	470		190	190	380		5
05331	C11 to C22 Aromatics	n.a.	240	J	190	190	380		5

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-2 Grab Groundwater MAF F-1					
Project Name:	MAF-F-1					
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 10:38 EMR07-03					

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059981
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA EP	H 5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05331	C19 to C36 Aliphatics	n.a.	N.D.	48	48	77		1
05331	C9 to C18 Aliphatics	n.a.	260	29	29	57		1
05331	Chrysene	218-01-9	N.D.	2.4	4.8	9.6		5
05331	Dibenzo(a,h)anthracene	53-70-3	N.D.	2.4	4.8	9.6		5
05331	Fluoranthene	206-44-0	N.D.	2.4	4.8	9.6		5
05331	Fluorene	86-73-7	N.D.	2.9	5.7	9.6		5
05331	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	2.9	5.7	9.6		5
05331	2-Methylnaphthalene	91-57-6	45	2.9	5.7	9.6		5
05331	Naphthalene	91-20-3	190	2.9	5.7	9.6		5
05331	Total Petroleum Hydrocarbons	n.a.	500 J	250	250	500		5
05331	Phenanthrene	85-01-8	N.D.	2.9	5.7	9.6		5
05331	Pyrene	129-00-0	N.D.	24	48	57		5
Spik	recovery for a target analyte(s)and su e(s) is outside the QC acceptance lim mary. Sufficient sample was not avai ysis.	its as noted on the QC						
GC Pe	troleum MT DE	Q	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05968	MTEPH Screen Water	n.a.	22,000	300	300	300	<mark>1000</mark>	1
05968	MTEPH Screen Water	n.a.	22,000 E	300	300	300	1000	1

Laboratory Sample Analysis Record

			•	• •			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19142B08A	05/23/2019 07:30	Mark Makowiecki	2
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19142B08A	05/23/2019 07:30	Mark Makowiecki	2
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	2-DL	19142B08A	05/23/2019 08:12	Mark Makowiecki	20
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 13:31	Heather E Williams	1
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 23:54	Heather E Williams	5
05331	MA-EPH Water DOD	MA EPH 5/04	1-1ST	191510004A	06/06/2019 23:54	Heather E Williams	5
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/23/2019 23:09	Timothy M Emrick	1
05968	MTEPH Screen Water	MT DEQ	2	191420017A	05/23/2019 23:09	Timothy M Emrick	1
07326	EPH Water Extraction	MA DEP EPH 5/04	1	191510004A	05/23/2019 01:45	Sherry L Morrow	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1
00497	Silica Gel Fractionation	SW-846 3630C modified	1	191510004A	06/02/2019 12:48	Christine E Gleim	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-4 Grab Groundwater	EMR Environmental				
	MAF F-1	ELLE Sample #:	GW 1059982			
		ELLE Group #:	2044467			
Project Name:	MAF-F-1	Matrix: Groundwater				
Submittal Date/Time:	05/17/2019 10:20					
Collection Date/Time:	05/15/2019 11:10					
SDG#:	EMR07-04					

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
		DEP VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydroo	carbons 2/201	18						
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	N.D.	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	Ethylbenzene	100-41-4	N.D.	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	N.D.	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
GC Petroleum MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l		
Hydroo	carbons							
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19142B08A	05/23/2019 08:53	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19142B08A	05/23/2019 08:53	Mark Makowiecki	1
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/23/2019 23:30	Timothy M Emrick	1
05968	MTEPH Screen Water	MT DEQ	2	191420017A	05/23/2019 23:30	Timothy M Emrick	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-5 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 11:42 EMR07-05

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059983
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name		CAS Number	Resu	lt	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
	GC Petroleum MA DEP VPH Hydrocarbons 2/2018		PH, Rev. 2.1	ug/l		ug/l	ug/l	ug/l	ug/l	
14079	Benzene		71-43-2	N.D.		2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydroca	arbons	n.a.	117	J	50.0	100	200		1
14079	Unadjusted C5-C8 Aliph	atics	n.a.	120	J	50.0	100	200		1
14079	C9-C10 Aromatic Hydro	carbons	n.a.	76.2	J	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydro	carbons	n.a.	56.5	J	50.0	100	200		1
14079	Unadjusted C9-C12 Alip	hatics	n.a.	158	J	50.0	100	200		1
14079	Ethylbenzene		100-41-4	4.39	J	2.00	4.00	5.00		1
14079	Methyl t-butyl ether		1634-04-4	N.D.		2.00	4.00	5.00		1
14079	Naphthalene		91-20-3	N.D.		3.00	6.00	10.0		1
14079	Total Purgeable Hydroc	arbons	n.a.	277		100	100	200		1
14079	Toluene		108-88-3	3.03	J	2.00	4.00	5.00		1
14079	o-Xylene		95-47-6	5.27		2.00	4.00	5.00		1
14079	m,p-Xylenes		179601-23-1	15.2		5.00	10.0	10.0		1
The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.										
	troleum carbons	MT DEQ		ug/l		ug/l	ug/l	ug/l	ug/l	
05968	MTEPH Screen Water		n.a.	460		300	300	300	1000	1
05968	MTEPH Screen Water		n.a.	460		300	300	300	1000	1

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/23/2019 20:47	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/23/2019 20:47	Mark Makowiecki	1
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/23/2019 23:51	Timothy M Emrick	1
05968	MTEPH Screen Water	MT DEQ	2	191420017A	05/23/2019 23:51	Timothy M Emrick	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-5D Grab Groundwater	EMR Environmental
	MAF F-1	ELLE Sample #: GW 1059984
		ELLE Group #: 2044467
Project Name:	MAF-F-1	Matrix: Groundwater
Submittal Date/Time:	05/17/2019 10:20	
Collection Date/Time:	05/15/2019 11:42	
SDG#:	EMR07-06FD	

CAT No.	Analysis Name		CAS Number	Resu	lt	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
	troleum carbons	MA DEP V 2/2018	PH, Rev. 2.1	ug/l		ug/l	ug/l	ug/l	ug/l	
14079	Benzene		71-43-2	2.20	J	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydroca	arbons	n.a.	109	J	50.0	100	200		1
14079	Unadjusted C5-C8 Aliph	natics	n.a.	114	J	50.0	100	200		1
14079	C9-C10 Aromatic Hydro	carbons	n.a.	85.7	J	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydro	carbons	n.a.	62.1	J	50.0	100	200		1
14079	Unadjusted C9-C12 Alip	ohatics	n.a.	177	J	50.0	100	200		1
14079	Ethylbenzene		100-41-4	4.88	J	2.00	4.00	5.00		1
14079	Methyl t-butyl ether		1634-04-4	N.D.		2.00	4.00	5.00		1
14079	Naphthalene		91-20-3	N.D.		3.00	6.00	10.0		1
14079	Total Purgeable Hydroc	arbons	n.a.	291		100	100	200		1
14079	Toluene		108-88-3	3.43	J	2.00	4.00	5.00		1
14079	o-Xylene		95-47-6	6.08		2.00	4.00	5.00		1
14079	m,p-Xylenes		179601-23-1	17.7		5.00	10.0	10.0		1
Spike	ecovery for a target analyte (s) is outside the QC acce nary. The client was cont	eptance limits as	s noted on the QC							
	troleum carbons	MT DEQ		ug/l		ug/l	ug/l	ug/l	ug/l	
05968	MTEPH Screen Water		n.a.	430		300	300	300	1000	1
05968	MTEPH Screen Water		n.a.	430		300	300	300	1000	1

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/23/2019 21:29	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/23/2019 21:29	Mark Makowiecki	1
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 00:12	Timothy M Emrick	1
05968	MTEPH Screen Water	MT DEQ	2	191420017A	05/24/2019 00:12	Timothy M Emrick	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-6 Grab Groundwater	EMR Environmental
	MAF F-1	ELLE Sample #: GW 1059985
		ELLE Group #: 2044467
Project Name:	MAF-F-1	Matrix: Groundwater
Submittal Date/Time:	05/17/2019 10:20	
Collection Date/Time:	05/15/2019 12:15	
SDG#:	EMR07-07	

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA	DEP VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons 2/2	018						
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbon	s n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbo	ons n.a.	N.D.	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbo	ns n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatic	s n.a.	N.D.	50.0	100	200		1
14079	Ethylbenzene	100-41-4	N.D.	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	6.99	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbor	ns n.a.	N.D.	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
GC Pe	troleum MT	DEQ	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19148B08A	05/28/2019 18:11	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19148B08A	05/28/2019 18:11	Mark Makowiecki	1
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 00:33	Timothy M Emrick	1
05968	MTEPH Screen Water	MT DEQ	2	191420017A	05/24/2019 00:33	Timothy M Emrick	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-7 Grab Groundwater	EMR Environmental		
	MAF F-1	ELLE Sample #:	GW 1059986	
		ELLE Group #:	2044467	
Project Name:	MAF-F-1	Matrix: Groundwate	ər	
Submittal Date/Time:	05/17/2019 10:20			
Collection Date/Time:	05/15/2019 12:36			
SDG#:	EMR07-08			

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
	troleum MA DEP carbons 2/2018	VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	N.D.	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	Ethylbenzene	100-41-4	N.D.	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	N.D.	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
GC Pet	troleum MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l	
Hydrod	carbons							
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1
	The recovery for the sample surrogat acceptance limits as noted on the QC		C					

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19148B08A	05/28/2019 18:52	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19148B08A	05/28/2019 18:52	Mark Makowiecki	1
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 00:54	Timothy M Emrick	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-6766 + www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-8 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 13:02 EMR07-09

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059987
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name		CAS Number	Resu	lt	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
	troleum carbons	MA DEP VI 2/2018	PH, Rev. 2.1	ug/l		ug/l	ug/l	ug/l	ug/l	
14079	Benzene		71-43-2	21.7		2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydroca	arbons	n.a.	123	J	50.0	100	200		1
14079	Unadjusted C5-C8 Aliph	atics	n.a.	145	J	50.0	100	200		1
14079	C9-C10 Aromatic Hydro	carbons	n.a.	47.0	J	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydro	carbons	n.a.	N.D.		50.0	100	200		1
14079	Unadjusted C9-C12 Alip	hatics	n.a.	85.3	J	50.0	100	200		1
14079	Ethylbenzene		100-41-4	3.80	J	2.00	4.00	5.00		1
14079	Methyl t-butyl ether		1634-04-4	N.D.		2.00	4.00	5.00		1
14079	Naphthalene		91-20-3	3.25	J	3.00	6.00	10.0		1
14079	Total Purgeable Hydroca	arbons	n.a.	230		100	100	200		1
14079	Toluene		108-88-3	N.D.		2.00	4.00	5.00		1
14079	o-Xylene		95-47-6	N.D.		2.00	4.00	5.00		1
14079	m,p-Xylenes		179601-23-1	N.D.		5.00	10.0	10.0		1
Spike	recovery for a target analyte e(s) is outside the QC acce mary. The client was conta	ptance limits as	s noted on the QC	;						
	troleum	MT DEQ		ug/l		ug/l	ug/l	ug/l	ug/l	
-						200	200	200	4000	4
05968	MTEPH Screen Water		n.a.	N.D.		300	300	300	1000	1
	The response for a targe									

verification standard is outside the QC acceptance limits high. The following action was taken:

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial

is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

			-				
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/23/2019 23:34	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/23/2019 23:34	Mark Makowiecki	1
05968 11174	MTEPH Screen Water MT EPH Waters Extraction	MT DEQ MT DEQ MA EPH	1 1	191420017A 191420017A	05/24/2019 11:00 05/23/2019 01:45	Timothy M Emrick Sherry L Morrow	1 1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-9 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 13:39 EMR07-10

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059988 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name		CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
	troleum carbons	MA DEP \ 2/2018	/PH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
14079	Benzene		71-43-2	3,270 E	10.0	20.0	25.0		5
14079	C5-C8 Aliphatic Hydroc	arbons	n.a.	12,300 E	250	500	1,000		5
14079	Unadjusted C5-C8 Alip		n.a.	16,500 E	250	500	1,000		5
14079	C9-C10 Aromatic Hydro		n.a.	5,510 E	100	200	1,000		5
14079	C9-C12 Aliphatic Hydro		n.a.	8,930 E	250	500	1,000		5
14079	Unadjusted C9-C12 Ali		n.a.	23,200 E	250	500	1,000		5
14079	Ethylbenzene	p.1.400	100-41-4	1,670 E	10.0	20.0	25.0		5
14079	Methyl t-butyl ether		1634-04-4	N.D.	10.0	20.0	25.0		5
14079	Naphthalene		91-20-3	444	15.0	30.0	50.0		5
14079	Total Purgeable Hydroc	arbons	n.a.	39,800 E	500	500	1,000		5
14079	Toluene		108-88-3	933 E	10.0	20.0	25.0		5
14079	o-Xylene		95-47-6	1,570 E	10.0	20.0	25.0		5
14079	m,p-Xylenes		179601-23-1	5,550 E	25.0	50.0	50.0		5
Tria	I ID: DL								
14079	Benzene		71-43-2	3,370	50.0	100	125		25
14079	C5-C8 Aliphatic Hydroc	arbons	n.a.	12,400	1,250	2,500	5,000		25
4079	Unadjusted C5-C8 Alip		n.a.	16,700	1,250	2,500	5,000		25
14079	C9-C10 Aromatic Hydro		n.a.	5,650	500	1.000	5,000		25
4079	C9-C12 Aliphatic Hydro		n.a.	8,450	1,250	2,500	5,000		25
4079	Unadjusted C9-C12 Ali		n.a.	23,300	1,250	2,500	5,000		25
4079	Ethylbenzene		100-41-4	1,700	50.0	100	125		25
14079	Methyl t-butyl ether		1634-04-4	N.D.	50.0	100	125		25
14079	Naphthalene		91-20-3	425	75.0	150	250		25
14079	Total Purgeable Hydrod	arbons	n.a.	40,000	2.500	2,500	5,000		25
14079	Toluene		108-88-3	973	50.0	100	125		25
4079	o-Xylene		95-47-6	1,660	50.0	100	125		25
4079	m,p-Xylenes		179601-23-1	5,830	125	250	250		25
Spike	recovery for a target analy e(s) is outside the QC acc mary. Sufficient sample w	eptance limits a	is noted on the QC						
	troleum	MA EPH 5	6/04	ug/l	ug/l	ug/l	ug/l	ug/l	
1 yuro 05331	carbons Acenaphthene		83-32-9	N.D.	5.8	12	19		10
05331	Acenaphthylene		208-96-8	N.D.	5.0 6.8	12	19		10
)5331	Acenaphthylene		208-96-8 120-12-7	N.D. N.D.	5.8	14	19		10
			56-55-3	N.D. N.D.	5.8 6.8		19 19		10
)5331	Benzo(a)anthracene					14			
)5331	Benzo(a)pyrene		50-32-8	N.D.	5.8	12	19		10 10
)5331	Benzo(b)fluoranthene		205-99-2	N.D.	5.8 5.8	12 12	19 19		10 10
05331	Benzo(g,h,i)perylene		191-24-2	N.D.	0.C	12	19		10

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-6766 + www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-9 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 13:39 EMR07-10

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059988
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA EPH	5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05331	Benzo(k)fluoranthene	207-08-9	N.D.	15	29	39		10
05331	Unadjusted C11 - C22 Aromatics	n.a.	480 J	390	390	780		10
05331	C11 to C22 Aromatics	n.a.	N.D.	390	390	780		10
05331	C19 to C36 Aliphatics	n.a.	N.D.	49	49	78		1
05331	C9 to C18 Aliphatics	n.a.	660	29	29	58		1
05331	Chrysene	218-01-9	N.D.	4.9	9.7	19		10
05331	Dibenzo(a,h)anthracene	53-70-3	N.D.	4.9	9.7	19		10
05331	Fluoranthene	206-44-0	N.D.	4.9	9.7	19		10
05331	Fluorene	86-73-7	N.D.	5.8	12	19		10
05331	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	5.8	12	19		10
05331	2-Methylnaphthalene	91-57-6	60	5.8	12	19		10
05331	Naphthalene	91-20-3	230	5.8	12	19		10
05331	Total Petroleum Hydrocarbons	n.a.	660	50	50	100		1
05331	Phenanthrene	85-01-8	N.D.	5.8	12	19		10
05331	Pyrene	129-00-0	N.D.	49	97	120		10
Spike	recovery for a target analyte(s)and surro e(s) is outside the QC acceptance limits mary. Sufficient sample was not availat /sis.	as noted on the QC						
	troleum MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05968	MTEPH Screen Water	n.a.	13,000 E	300	300	300	<mark>1000</mark>	1
	The response for a target analyte(s) i verification standard is outside the QC action was taken:			ng				

action was taken:

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial

is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

			-	• •			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/24/2019 00:15	Mark Makowiecki	5
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/24/2019 00:15	Mark Makowiecki	5
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	2-DL	19143B08A	05/24/2019 09:28	Mark Makowiecki	25
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 16:13	Heather E Williams	1
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/07/2019 00:34	Heather E Williams	10
05331	MA-EPH Water DOD	MA EPH 5/04	1-1ST	191510004A	06/07/2019 00:34	Heather E Williams	1

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description:	MW-9 Grab Groundwater	EMR Environmental				
	MAF F-1	ELLE Sample #:	GW 1059988			
		ELLE Group #:	2044467			
Project Name: MAF-F-1		Matrix: Groundwa	iter			
Submittal Date/Time:	05/17/2019 10:20					
Collection Date/Time:	05/15/2019 13:39					
SDG#:	EMR07-10					

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 13:09	Timothy M Emrick	1
07326	EPH Water Extraction	MA DEP EPH 5/04	1	191510004A	05/23/2019 01:45	Sherry L Morrow	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1
00497	Silica Gel Fractionation	SW-846 3630C modified	1	191510004A	06/02/2019 12:48	Christine E Gleim	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-10 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 14:02 EMR07-11

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059989 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
	troleum MA D carbons 2/2013	EP VPH, Rev. 2.1 8	ug/l	ug/l	ug/l	ug/l	ug/l	
14079	Benzene	71-43-2	501 E	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	1,730 E	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	2,250 E	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	1,740 E	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	1,410 E	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	3,840 E	50.0	100	200		1
14079	Ethylbenzene	100-41-4	274 E	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	160	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	6,090 E	100	100	200		1
14079	Toluene	108-88-3	16.2	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	49.6	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	367	5.00	10.0	10.0		1
Tria	ID: DL							
14079	Benzene	71-43-2	475	10.0	20.0	25.0		5
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	1,490	250	500	1,000		5
14079	Unadjusted C5-C8 Aliphatics	n.a.	1,980	250	500	1,000		5
14079	C9-C10 Aromatic Hydrocarbons	n.a.	1,480	100	200	1,000		5
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	1,130	250	500	1,000		5
14079	Unadjusted C9-C12 Aliphatics	n.a.	3,210	250	500	1,000		5
14079	Ethylbenzene	100-41-4	242	10.0	20.0	25.0		5
14079	Methyl t-butyl ether	1634-04-4	N.D.	10.0	20.0	25.0		5
14079	Naphthalene	91-20-3	146	15.0	30.0	50.0		5
14079	Total Purgeable Hydrocarbons	n.a.	5,190	500	500	1.000		5
14079	Toluene	108-88-3	15.3 J	10.0	20.0	25.0		5
14079	o-Xylene	95-47-6	49.2	10.0	20.0	25.0		5
14079	m,p-Xylenes	179601-23-1	320	25.0	50.0	50.0		5
The I Spike	recovery for a target analyte(s) in the e(s) is outside the QC acceptance li mary. Sufficient sample was not av	e Laboratory Control mits as noted on the QC						
		PH 5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
-	carbons	02.22.0		1.0	2.2	2.0		2
05331	Acenaphthene	83-32-9	N.D.	1.2	2.3	3.9		2 2
05331	Acenaphthylene	208-96-8	N.D.	1.4	2.7	3.9		
05331	Anthracene	120-12-7	N.D.	1.2	2.3	3.9		2
05331	Benzo(a)anthracene	56-55-3	N.D.	1.4	2.7	3.9		2
05331	Benzo(a)pyrene	50-32-8	N.D.	1.2	2.3	3.9		2
05331	Benzo(b)fluoranthene	205-99-2	N.D.	1.2	2.3	3.9		2
05331	Benzo(g,h,i)perylene	191-24-2	N.D.	1.2	2.3	3.9		2

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-10 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 14:02 EMR07-11

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059989 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA EPH	1 5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05331	Benzo(k)fluoranthene	207-08-9	N.D.	2.9	5.8	7.8		2
05331	Unadjusted C11 - C22 Aromatics	n.a.	150 J	78	78	160		2
05331	C11 to C22 Aromatics	n.a.	N.D.	78	78	160		2
05331	C19 to C36 Aliphatics	n.a.	N.D.	49	49	78		1
05331	C9 to C18 Aliphatics	n.a.	110	29	29	58		1
05331	Chrysene	218-01-9	N.D.	0.97	1.9	3.9		2
05331	Dibenzo(a,h)anthracene	53-70-3	N.D.	0.97	1.9	3.9		2
05331	Fluoranthene	206-44-0	N.D.	0.97	1.9	3.9		2
05331	Fluorene	86-73-7	N.D.	1.2	2.3	3.9		2
05331	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1.2	2.3	3.9		2
05331	2-Methylnaphthalene	91-57-6	20	1.2	2.3	3.9		2
05331	Naphthalene	91-20-3	65	1.2	2.3	3.9		2
05331	Total Petroleum Hydrocarbons	n.a.	110 J	100	100	200		2
05331	Phenanthrene	85-01-8	N.D.	1.2	2.3	3.9		2
05331	Pyrene	129-00-0	N.D.	9.7	19	23		2
Spike	ecovery for a target analyte(s)and sur e(s) is outside the QC acceptance liminary. Sufficient sample was not availes.	ts as noted on the QC						
GC Pe	troleum MT DEC	2	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05968	MTEPH Screen Water	n.a.	6,700 E	300	300	300	1000	1
	The response for a target analyte(s verification standard is outside the d action was taken:			ng				

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial

is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

			-	• •			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/24/2019 01:38	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/24/2019 01:38	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	2-DL	19143B08A	05/24/2019 02:20	Mark Makowiecki	5
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 17:33	Heather E Williams	1
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/07/2019 01:13	Heather E Williams	2
05331	MA-EPH Water DOD	MA EPH 5/04	1-1ST	191510004A	06/07/2019 01:13	Heather E Williams	2

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description:	MW-10 Grab Groundwater	EMR Environmental				
	MAF F-1	ELLE Sample #: ELLE Group #:	GW 1059989 2044467			
Project Name: MAF-F-1		Matrix: Groundwater				
Submittal Date/Time:	05/17/2019 10:20					
Collection Date/Time:	05/15/2019 14:02					
SDG#:	EMR07-11					

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 12:48	Timothy M Emrick	1
07326	EPH Water Extraction	MA DEP EPH 5/04	1	191510004A	05/23/2019 01:45	Sherry L Morrow	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1
00497	Silica Gel Fractionation	SW-846 3630C modified	1	191510004A	06/02/2019 12:48	Christine E Gleim	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-6766 + www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-11 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 14:32 EMR07-12

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059990
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
		VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons 2/2018							
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	N.D.	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	Ethylbenzene	100-41-4	N.D.	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	N.D.	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
GC Pe	troleum MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1
	The response for a target analyte(s)	in the continuing ca	libration					

verification standard is outside the QC acceptance limits high. The following

action was taken:

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19148B08A	05/28/2019 20:16	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19148B08A	05/28/2019 20:16	Mark Makowiecki	1
05968 11174	MTEPH Screen Water MT EPH Waters Extraction	MT DEQ MT DEQ MA EPH	1 1	191420017A 191420017A	05/24/2019 11:22 05/23/2019 01:45	Timothy M Emrick Sherry L Morrow	1 1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-14 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 14:56 EMR07-13

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059991
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pet	roleum MA	DEP VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydrod	arbons 2/2	018						
14079	Benzene	71-43-2	13.1	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbon	s n.a.	662	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	675	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbo	ons n.a.	204	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbo	ns n.a.	132 J	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	s n.a.	343	50.0	100	200		1
14079	Ethylbenzene	100-41-4	7.53	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbon	s n.a.	1,020	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
Spike Sumn analy	ecovery for a target analyte(s) in (s) is outside the QC acceptance nary. Sufficient sample was not sis.	ce limits as noted on the QC t available to repeat the	;					
was n GC Pet		5	ple ug/l	ug/l	ug/l	ug/l	ug/l	
	subous							
-lydroc 05968	MTEPH Screen Water	n.a.	730	300	300	300	1000	1

verification standard is outside the QC acceptance limits high. The following

action was taken:

The analysis was repeated and the continuing calibration verification standard bracketing the sample on the second trial

is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/24/2019 03:43	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/24/2019 03:43	Mark Makowiecki	1
05968 11174	MTEPH Screen Water MT EPH Waters Extraction	MT DEQ MT DEQ MA EPH	1 1	191420017A 191420017A	05/24/2019 12:05 05/23/2019 01:45	Timothy M Emrick Sherry L Morrow	1 1

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-6766 + www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-13 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 15:24 EMR07-14

Analysis Report

REVISED

EMR Environment	tal
ELLE Sample #:	GW 1059992
ELLE Group #:	2044467
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
		VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons 2/2018							
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	N.D.	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	N.D.	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	N.D.	50.0	100	200		1
14079	Ethylbenzene	100-41-4	N.D.	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	N.D.	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	N.D.	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	N.D.	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
GC Pe	troleum MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l	
lydro	carbons							
05968	MTEPH Screen Water	n.a.	N.D.	300	300	300	1000	1
	The response for a target analyte(s)							

verification standard is outside the QC acceptance limits high. The following

action was taken:

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19148B08A	05/28/2019 20:58	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19148B08A	05/28/2019 20:58	Mark Makowiecki	1
05968 11174	MTEPH Screen Water MT EPH Waters Extraction	MT DEQ MT DEQ MA EPH	1 1	191420017A 191420017A	05/24/2019 11:43 05/23/2019 01:45	Timothy M Emrick Sherry L Morrow	1 1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-15 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 15:49 EMR07-15

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059993 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA DE	P VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons 2/2018							
14079	Benzene	71-43-2	N.D.	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydrocarbons	n.a.	1,220	50.0	100	200		1
14079	Unadjusted C5-C8 Aliphatics	n.a.	1,220	50.0	100	200		1
14079	C9-C10 Aromatic Hydrocarbons	n.a.	1,750	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydrocarbons	n.a.	1,110	50.0	100	200		1
14079	Unadjusted C9-C12 Aliphatics	n.a.	2,900	50.0	100	200		1
14079	Ethylbenzene	100-41-4	39.0	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	27.0	3.00	6.00	10.0		1
14079	Total Purgeable Hydrocarbons	n.a.	4,120	100	100	200		1
14079	Toluene	108-88-3	N.D.	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	3.73 J	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	N.D.	5.00	10.0	10.0		1
analy The acce	recovery for the sample surrogate(s) ptance limits as noted on the QC Su	is outside the QC	ple					
analy The acce was	rsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis.	is outside the QC	ple ug/l	ug/l	ug/l	ug/l	ug/l	
analy The acce was	rsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis.	is outside the QC mmary. Sufficient sam		ug/l	ug/l	ug/l	ug/l	
analy The acce was GC Pe Hydro	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF	is outside the QC mmary. Sufficient sam		ug/l 0.58	ug/l 1.2	ug/l 1.9	ug/l	1
analy The acce was GC Pe lydro 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons	is outside the QC mmary. Sufficient sam PH 5/04	ug/l	-	-	-	ug/l	1
analy The acce was GC Pe Hydro 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9	ug/l N.D.	0.58	1.2	1.9	ug/l	
analy The acce was GC Pe Hydro 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum Carbons Acenaphthene Acenaphthylene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8	ug/l N.D. N.D.	0.58 0.67	1.2 1.3	1.9 1.9	ug/l	1
analy The acce was GC Pe Hydro 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum Carbons Acenaphthene Acenaphthylene Anthracene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7	ug/l N.D. N.D. N.D.	0.58 0.67 0.58	1.2 1.3 1.2	1.9 1.9 1.9	ug/l	1 1
analy The acce was GC Pe Hydro 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum Carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3	ug/l N.D. N.D. N.D. N.D.	0.58 0.67 0.58 0.67	1.2 1.3 1.2 1.3	1.9 1.9 1.9 1.9	ug/l	1 1 1
analy The acce was	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum Carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	N.D. N.D. N.D. N.D. N.D. N.D.	0.58 0.67 0.58 0.67 0.58	1.2 1.3 1.2 1.3 1.2	1.9 1.9 1.9 1.9 1.9 1.9	ug/l	1 1 1 1
analy The acce was GC Pe Hydro 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	0.58 0.67 0.58 0.67 0.58 0.58	1.2 1.3 1.2 1.3 1.2 1.2 1.2	1.9 1.9 1.9 1.9 1.9 1.9 1.9	ug/l	1 1 1 1
analy The acce was GC Pe Hydro 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.	0.58 0.67 0.58 0.67 0.58 0.58 0.58	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2	1.9 1.9 1.9 1.9 1.9 1.9 1.9	ug/l	1 1 1 1 1
analy The acce was 3C Pe 1ydro 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8	ug/l	1 1 1 1 1 1
analy The acce was 3C Pe 1ydro 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a.	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4 38	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77	ug/l	1 1 1 1 1 1 1
analy The acce was BC Pe 1ydro 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su- not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics C11 to C22 Aromatics	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a. n.a.	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4 38 38	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38 38	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77 77	ug/l	1 1 1 1 1 1 1 1
analy The acce was 3C Pe 1ydro 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)apyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics C11 to C22 Aromatics C19 to C36 Aliphatics	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a. n.a. n.a. n.a.	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. 440 380 N.D.	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4 38 38 48	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38 38 38 48	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77 77 77	ug/l	1 1 1 1 1 1 1 1
analy The acce was 6C Pe 1ydro 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)apyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics C11 to C22 Aromatics C19 to C36 Aliphatics C9 to C18 Aliphatics	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a. n.a. n.a. n.a. n.a. n.a.	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4 38 38 48 29	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38 38 48 29	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77 77 77 58	ug/l	1 1 1 1 1 1 1 1 1
analy The acce was GC Pe 1ydro 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics C11 to C22 Aromatics C19 to C36 Aliphatics C9 to C18 Aliphatics Chrysene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a. n.a. n.a. n.a. n.a. 218-01-9	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. 440 380 N.D. 520 N.D.	0.58 0.67 0.58 0.67 0.58 0.58 1.4 38 38 48 29 0.48	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38 38 48 29 0.96	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77 77 77 58 1.9	ug/l	1 1 1 1 1 1 1 1 1 1
analy The acce was GC Pe Hydro 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics C11 to C22 Aromatics C19 to C36 Aliphatics C9 to C18 Aliphatics Chrysene Dibenzo(a,h)anthracene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a. n.a. n.a. n.a. n.a. 218-01-9 53-70-3	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. 440 380 N.D. 520 N.D. 520 N.D. N.D.	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4 38 38 48 29 0.48 0.48	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38 38 48 29 0.96 0.96	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77 77 77 58 1.9 1.9	ug/l	1 1 1 1 1 1 1 1 1 1 1
analy The acce was GC Pe Hydro 05331 05331 05331 05331 05331 05331	vsis. recovery for the sample surrogate(s) ptance limits as noted on the QC Su not available to repeat the analysis. troleum MA EF carbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Unadjusted C11 - C22 Aromatics C11 to C22 Aromatics C19 to C36 Aliphatics C9 to C18 Aliphatics Chrysene Dibenzo(a,h)anthracene Fluoranthene	is outside the QC mmary. Sufficient sam PH 5/04 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 n.a. n.a. n.a. n.a. n.a. 218-01-9 53-70-3 206-44-0	ug/l N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.58 0.67 0.58 0.67 0.58 0.58 0.58 1.4 38 38 48 29 0.48 0.48	1.2 1.3 1.2 1.3 1.2 1.2 1.2 1.2 2.9 38 38 48 29 0.96 0.96 0.96 0.96	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.8 77 77 77 58 1.9 1.9 1.9	ug/l	1 1 1 1 1 1 1 1 1 1 1 1

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Sample Description:	MW-15 Grab Groundwater	EMR Environmental
	MAF F-1	ELLE Sample #: GW 1059993
		ELLE Group #: 2044467
Project Name:	MAF-F-1	Matrix: Groundwater
Submittal Date/Time:	05/17/2019 10:20	
Collection Date/Time:	05/15/2019 15:49	
SDG#:	EMR07-15	

CAT No.	Analysis Name	CAS	S Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum	MA EPH 5/04		ug/l	ug/l	ug/l	ug/l	ug/l	
Hydrod	carbons								
05331	Naphthalene	91-2	20-3	21	0.58	1.2	1.9		1
05331	Total Petroleum Hydroc	arbons n.a.		900	50	50	100		1
05331	Phenanthrene	85-0	01-8	N.D.	0.58	1.2	1.9		1
05331	Pyrene	129-	-00-0	N.D.	4.8	9.6	12		1
Spike	ecovery for a target analy e(s) is outside the QC acce nary. Sufficient sample w sis.	eptance limits as noted	d on the QC	tory Control					
	troleum	MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l	
Hydroo	carbons								
05968	MTEPH Screen Water	n.a.		<mark>3,100</mark>	300	300	300	<mark>1000</mark>	1
	The response for a target verification standard is of	, , ,	0						

relification standard is outside the QC acceptance limits high. The following action was taken:

The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/24/2019 05:06	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/24/2019 05:06	Mark Makowiecki	1
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 18:12	Heather E Williams	1
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/06/2019 18:52	Heather E Williams	1
05331	MA-EPH Water DOD	MA EPH 5/04	1-1ST	191510004A	06/06/2019 18:12	Heather E Williams	1
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 12:26	Timothy M Emrick	1
07326	EPH Water Extraction	MA DEP EPH 5/04	1	191510004A	05/23/2019 01:45	Sherry L Morrow	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1
00497	Silica Gel Fractionation	SW-846 3630C modified	1	191510004A	06/02/2019 12:48	Christine E Gleim	1

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-12 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 16:22 EMR07-16

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059994 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum	MA DEP VPH, Rev. 2.1	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro		2/2018						
14079	Benzene	71-43-2	518 E	2.00	4.00	5.00		1
14079	C5-C8 Aliphatic Hydroca	rbons n.a.	5,830 E	50.0	100	200		1
14079	Unadjusted C5-C8 Alipha	ntics n.a.	6,420 E	50.0	100	200		1
14079	C9-C10 Aromatic Hydroc	arbons n.a.	7,930 E	20.0	40.0	200		1
14079	C9-C12 Aliphatic Hydroc	arbons n.a.	7,400 E	50.0	100	200		1
14079	Unadjusted C9-C12 Aliph	natics n.a.	18,500 E	50.0	100	200		1
14079	Ethylbenzene	100-41-4	886 E	2.00	4.00	5.00		1
14079	Methyl t-butyl ether	1634-04-4	N.D.	2.00	4.00	5.00		1
14079	Naphthalene	91-20-3	442 E	3.00	6.00	10.0		1
14079	Total Purgeable Hydroca	rbons n.a.	25,000 E	100	100	200		1
14079	Toluene	108-88-3	68.3	2.00	4.00	5.00		1
14079	o-Xylene	95-47-6	346 E	2.00	4.00	5.00		1
14079	m,p-Xylenes	179601-23-1	1,980 E	5.00	10.0	10.0		1
Tria	I ID: DL							
14079	Benzene	71-43-2	459	20.0	40.0	50.0		10
14079	C5-C8 Aliphatic Hydroca	rbons n.a.	4,780	500	1.000	2,000		10
14079	Unadjusted C5-C8 Alipha	ntics n.a.	5,300	500	1.000	2.000		10
14079	C9-C10 Aromatic Hydroc	arbons n.a.	8,050	200	400	2.000		10
14079	C9-C12 Aliphatic Hydroc	arbons n.a.	6,090	500	1.000	2,000		10
14079	Unadjusted C9-C12 Aliph	natics n.a.	17,200	500	1.000	2,000		10
14079	Ethylbenzene	100-41-4	801	20.0	40.0	50.0		10
14079	Methyl t-butyl ether	1634-04-4	N.D.	20.0	40.0	50.0		10
14079	Naphthalene	91-20-3	463	30.0	60.0	100		10
14079	Total Purgeable Hydroca	rbons n.a.	22,500	1,000	1.000	2,000		10
14079	Toluene	108-88-3	59.9	20.0	40.0	50.0		10
14079	o-Xylene	95-47-6	334	20.0	40.0	50.0		10
14079	m,p-Xylenes	179601-23-1	1,920	50.0	100	100		10
Spike	e(s) is outside the QC accept mary. Sufficient sample wa	e(s) in the Laboratory Control otance limits as noted on the QC s not available to repeat the	;					
		MA EPH 5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
-	Carbons	83-32-9		11	22	20		20
05331	Acenaphthene		N.D. N.D.	11	23	38		20 20
05331	Acenaphthylene	208-96-8		13	27 23	38		20 20
05331	Anthracene	120-12-7	N.D.	11		38		
05331	Benzo(a)anthracene	56-55-3	N.D.	13	27	38		20
05331	Benzo(a)pyrene	50-32-8	N.D.	11	23	38		20
05331	Benzo(b)fluoranthene	205-99-2	N.D.	11	23	38		20
05331	Benzo(g,h,i)perylene	191-24-2	N.D.	11	23	38		20

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	MW-12 Grab Groundwater MAF F-1
Project Name:	MAF-F-1
Submittal Date/Time: Collection Date/Time: SDG#:	05/17/2019 10:20 05/15/2019 16:22 EMR07-16

Analysis Report

REVISED

EMR Environmental ELLE Sample #: GW 1059994 ELLE Group #: 2044467 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Detection Limit*	Limit of Detection	Limit of Quantitation	Action Limit	DF
GC Pe	troleum MA EPH	5/04	ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05331	Benzo(k)fluoranthene	207-08-9	N.D.	29	57	77		20
05331	Unadjusted C11 - C22 Aromatics	n.a.	2,500	770	770	1,500		20
05331	C11 to C22 Aromatics	n.a.	1,800	770	770	1,500		20
05331	C19 to C36 Aliphatics	n.a.	N.D.	96	96	150		2
05331	C9 to C18 Aliphatics	n.a.	5,600	57	57	110		2
05331	Chrysene	218-01-9	N.D.	9.6	19	38		20
05331	Dibenzo(a,h)anthracene	53-70-3	N.D.	9.6	19	38		20
05331	Fluoranthene	206-44-0	N.D.	9.6	19	38		20
05331	Fluorene	86-73-7	N.D.	11	23	38		20
05331	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	11	23	38		20
05331	2-Methylnaphthalene	91-57-6	340	11	23	38		20
05331	Naphthalene	91-20-3	330	11	23	38		20
05331	Total Petroleum Hydrocarbons	n.a.	7,400	1,000	1.000	2,000		20
05331	Phenanthrene	85-01-8	N.D.	11	23	38		20
05331	Pyrene	129-00-0	N.D.	96	190	230		20
Spike	recovery for a target analyte(s)and surro e(s) is outside the QC acceptance limits mary. Sufficient sample was not availat /sis.	as noted on the QC						
GC Pe	troleum MT DEQ		ug/l	ug/l	ug/l	ug/l	ug/l	
Hydro	carbons							
05968	MTEPH Screen Water	n.a.	27,000 E	300	300	300	<mark>1000</mark>	1
	The response for a target analyte(s) i verification standard is outside the QC action was taken:			ng				

action was taken: The analysis was repeated and the continuing calibration

verification standard bracketing the sample on the second trial

is also outside the acceptance limits high. This effect is attributed

to the sample matrix and the data is reported.

Laboratory Sample Analysis Record

			-	• •			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1	19143B08A	05/24/2019 06:29	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	1-1ST	19143B08A	05/24/2019 06:29	Mark Makowiecki	1
14079	MA-VPH Water DOD	MA DEP VPH, Rev. 2.1 2/2018	2-DL	19143B08A	05/24/2019 07:10	Mark Makowiecki	10
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/07/2019 01:53	Heather E Williams	20
05331	MA-EPH Water DOD	MA EPH 5/04	1	191510004A	06/07/2019 02:33	Heather E Williams	2
05331	MA-EPH Water DOD	MA EPH 5/04	1-1ST	191510004A	06/07/2019 01:53	Heather E Williams	20

*=This limit was used in the evaluation of the final result

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description:	MW-12 Grab Groundwater	EMR Environmental
	MAF F-1	ELLE Sample #: GW 1059994 ELLE Group #: 2044467
Project Name:	MAF-F-1	Matrix: Groundwater
Submittal Date/Time:	05/17/2019 10:20	
Collection Date/Time:	05/15/2019 16:22	
SDG#:	EMR07-16	

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05968	MTEPH Screen Water	MT DEQ	1	191420017A	05/24/2019 13:31	Timothy M Emrick	1
07326	EPH Water Extraction	MA DEP EPH 5/04	1	191510004A	05/23/2019 01:45	Sherry L Morrow	1
11174	MT EPH Waters Extraction	MT DEQ MA EPH	1	191420017A	05/23/2019 01:45	Sherry L Morrow	1
00497	Silica Gel Fractionation	SW-846 3630C modified	1	191510004A	06/02/2019 12:48	Christine E Gleim	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Quality Control Summary

Client Name: EMR Environmental Reported: 08/06/2019 09:51 Group Number: 2044467

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	DL**	LOD	LOQ
	ug/l	ug/l	ug/l	ug/l
Batch number: 191420017A	Sample number(s	•	•	C
MTEPH Screen Water	N.D.	300	300	300
Rotch number: 10142R08A	Somple number/	-): 1050070 1	050092	
Batch number: 19142B08A Benzene	Sample number(N.D.	2.00	4.00	5.00
C5-C8 Aliphatic Hydrocarbons	N.D.	2.00 50.0	4.00	100
Unadjusted C5-C8 Aliphatics	N.D. N.D.	50.0 50.0	100	100
C9-C10 Aromatic Hydrocarbons	N.D.	20.0	40.0	100
C9-C12 Aliphatic Hydrocarbons	N.D.	20.0 50.0	40.0 100	100
Unadjusted C9-C12 Aliphatics	N.D.	50.0 50.0	100	100
Ethylbenzene	N.D.	2.00	4.00	5.00
Methyl t-butyl ether	N.D. N.D.	2.00	4.00	5.00
Naphthalene	N.D. N.D.	2.00 3.00	4.00 6.00	6.00
•	N.D. N.D.	50.0	100	100
Total Purgeable Hydrocarbons Toluene	N.D. N.D.	2.00	4.00	5.00
o-Xylene	N.D. N.D.	2.00	4.00 4.00	5.00
m,p-Xylenes	N.D. N.D.	2.00 5.00	4.00 10.0	10.0
III,p-Aylenes	N.D.	5.00	10.0	10.0
Batch number: 19143B08A	Sample number(s): 1059983-1	059984,10599	87-1059989,1059991,1059993-1059994
Benzene	N.D.	2.00	4.00	5.00
C5-C8 Aliphatic Hydrocarbons	N.D.	50.0	100	100
Unadjusted C5-C8 Aliphatics	N.D.	50.0	100	100
C9-C10 Aromatic Hydrocarbons	N.D.	20.0	40.0	100
C9-C12 Aliphatic Hydrocarbons	N.D.	50.0	100	100
Unadjusted C9-C12 Aliphatics	N.D.	50.0	100	100
Ethylbenzene	N.D.	2.00	4.00	5.00
Methyl t-butyl ether	N.D.	2.00	4.00	5.00
Naphthalene	N.D.	3.00	6.00	6.00
Total Purgeable Hydrocarbons	N.D.	50.0	100	100
Toluene	N.D.	2.00	4.00	5.00
o-Xylene	N.D.	2.00	4.00	5.00
m,p-Xylenes	N.D.	5.00	10.0	10.0
Batch number: 19148B08A	Sample number(s): 1059985-1	059986,10599	90,1059992
Benzene	N.D.	2.00	4.00	5.00
C5-C8 Aliphatic Hydrocarbons	313	50.0	100	100
Unadjusted C5-C8 Aliphatics	313	50.0	100	100
C9-C10 Aromatic Hydrocarbons	N.D.	20.0	40.0	100
C9-C12 Aliphatic Hydrocarbons	N.D.	50.0	100	100
Unadjusted C9-C12 Aliphatics	N.D.	50.0	100	100
Ethylbenzene	N.D.	2.00	4.00	5.00

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Quality Control Summary

Method Blank (continued)

Client Name: EMR Environmental
Reported: 08/06/2019 09:51

Group Number: 2044467

		Metho		continucuj	
Analysis Name	Result	DL**	LOD	LOQ	
	ug/l	ug/l	ug/l	ug/l	
Methyl t-butyl ether	N.D.	2.00	4.00	5.00	
Naphthalene	N.D.	3.00	6.00	6.00	
Total Purgeable Hydrocarbons	313	50.0	100	100	
Toluene	N.D.	2.00	4.00	5.00	
o-Xylene	N.D.	2.00	4.00	5.00	
m,p-Xylenes	N.D.	5.00	10.0	10.0	
Batch number: 191510004A	Sample num	ber(s): 1059980	0-1059981,10	59988-1059989,1059993-	1059994
Acenaphthene	N.D.	0.60	1.2	2.0	
Acenaphthylene	N.D.	0.70	1.4	2.0	
Anthracene	N.D.	0.60	1.2	2.0	
Benzo(a)anthracene	N.D.	0.70	1.4	2.0	
Benzo(a)pyrene	N.D.	0.60	1.2	2.0	
Benzo(b)fluoranthene	N.D.	0.60	1.2	2.0	
Benzo(g,h,i)perylene	N.D.	0.60	1.2	2.0	
Benzo(k)fluoranthene	N.D.	1.5	3.0	4.0	
Unadjusted C11 - C22 Aromatics	N.D.	40	40	40	
C11 to C22 Aromatics	N.D.	40	40	40	
C19 to C36 Aliphatics	N.D.	50	50	50	
C9 to C18 Aliphatics	N.D.	30	30	30	
Chrysene	N.D.	0.50	1.0	2.0	
Dibenzo(a,h)anthracene	N.D.	0.50	1.0	2.0	
Fluoranthene	N.D.	0.50	1.0	2.0	
Fluorene	N.D.	0.60	1.2	2.0	
Indeno(1,2,3-cd)pyrene	N.D.	0.60	1.2	2.0	
2-Methylnaphthalene	N.D.	0.60	1.2	2.0	
Naphthalene	N.D.	0.60	1.2	2.0	
Total Petroleum Hydrocarbons	N.D.	50	50	100	
Phenanthrene	N.D.	0.60	1.2	2.0	
Pyrene	N.D.	5.0	10	12	

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 191420017A	Sample number	(s): 1059980-1	059994						
MTEPH Screen Water	1243.55	899.62	1243.55	1179.66	72	95	40-140	27	50
Batch number: 19142B08A	Sample number	(s): 1059979-1	059982						
Benzene	50.19	49.9	50.19	49.46	99	99	70-130	1	25
C5-C8 Aliphatic Hydrocarbons	150.78	159.45	150.78	159.02	106	105	70-130	0	25
Unadjusted C5-C8 Aliphatics	301.31	307.23	301.31	305.7	102	101	70-130	0	25

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Quality Control Summary

Client Name: EMR Environmental Reported: 08/06/2019 09:51 Group Number: 2044467

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
C9-C10 Aromatic Hydrocarbons	50.07	49.28	50.07	48.95	98	98	70-130	1	25
C9-C12 Aliphatic Hydrocarbons	150.53	132.2	150.53	133.5	88	89	70-130	1	25
Unadjusted C9-C12 Aliphatics	401.21	375.05	401.21	375.06	93	93	70-130	0	25
Ethylbenzene	50.18	49.38	50.18	49.03	98	98	70-130	1	25
Methyl t-butyl ether	50.03	48.19	50.03	48.08	96	96	70-130	0	25
Naphthalene	50.16	45.36	50.16	45.95	90	92	70-130	1	25
Toluene	50.3	49.68	50.3	49.14	99	98	70-130	1	25
o-Xylene	50	47.57	50	47.35	95	95	70-130	0	25
m,p-Xylenes	100.43	96.62	100.43	96.23	96	96	70-130	0	25
Batch number: 19143B08A	Sample number	(s): 1059983-1	059984,1059987-	1059989,105	9991,10599	93-105999	4		
Benzene	50.19	38.66	50.19	38.57	77	77	70-130	0	25
C5-C8 Aliphatic Hydrocarbons	150.78	123.05	150.78	121.5	82	81	70-130	1	25
Unadjusted C5-C8 Aliphatics	301.31	238.08	301.31	236.19	79	78	70-130	1	25
C9-C10 Aromatic Hydrocarbons	50.07	38.56	50.07	38.39	77	77	70-130	0	25
C9-C12 Aliphatic Hydrocarbons	150.53	99.54	150.53	98.09	66*	65*	70-130	1	25
Unadjusted C9-C12 Aliphatics	401.21	289.46	401.21	287.64	72	72	70-130	1	25
Ethylbenzene	50.18	38.49	50.18	38.38	77	76	70-130	0	25
Methyl t-butyl ether	50.03	37.94	50.03	37.57	76	75	70-130	1	25
Naphthalene	50.16	35.47	50.16	35.47	71	71	70-130	0	25
Toluene	50.3	38.43	50.3	38.55	76	77	70-130	0	25
o-Xylene	50	37.28	50	37.1	75	74	70-130	0	25
m,p-Xylenes	100.43	75.59	100.43	75.67	75	75	70-130	0	25
Batch number: 19148B08A	Sample number	(s): 1059985-1	059986,1059990,1	1059992					
Benzene	50.19	46.29	50.19	46.47	92	93	70-130	0	25
C5-C8 Aliphatic Hydrocarbons	150.78	159.81	150.78	160.8	106	107	70-130	1	25
Unadjusted C5-C8 Aliphatics	301.31	300.45	301.31	302.14	100	100	70-130	1	25
C9-C10 Aromatic Hydrocarbons	50.07	45.95	50.07	46.04	92	92	70-130	0	25
C9-C12 Aliphatic Hydrocarbons	150.53	139.68	150.53	140.96	93	94	70-130	1	25
Unadjusted C9-C12 Aliphatics	401.21	365.63	401.21	368.49	91	92	70-130	1	25
Ethylbenzene	50.18	45.81	50.18	46.08	91	92	70-130	1	25
Methyl t-butyl ether	50.03	48.13	50.03	48.3	96	97	70-130	0	25
Naphthalene	50.16	51.4	50.16	51.74	102	103	70-130	1	25
Toluene	50.3	46.23	50.3	46.57	92	93	70-130	1	25
o-Xylene	50	44.12	50	44.46	88	89	70-130	1	25
m,p-Xylenes	100.43	90.07	100.43	90.94	90	91	70-130	1	25
Batch number: 191510004A	Sample number	(s): 1059980-1	059981,1059988-	1059989,105	9993-10599	94			
Acenaphthene	40.08	13.23	40.08	22.42	33*	56	40-140	52*	25
Acenaphthylene	40.08	13.5	40.08	22.75	34*	57	40-140	51*	25
Anthracene	40.12	14.77	40.12	24.83	37*	62	40-140	51*	25
Benzo(a)anthracene	40.16	15.21	40.16	25.52	38*	64	40-140	51*	25
Benzo(a)pyrene	40.12	14.3	40.12	23.59	36*	59	40-140	49*	25
Benzo(b)fluoranthene	40.12	15.45	40.12	26.18	39*	65	40-140	52*	25

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Quality Control Summary

Client Name: EMR Environmental Reported: 08/06/2019 09:51 Group Number: 2044467

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Benzo(g,h,i)perylene	40.04	15.08	40.04	25.28	38*	63	40-140	51*	25
Benzo(k)fluoranthene	40.08	14.72	40.08	24.21	37*	60	40-140	49*	25
Unadjusted C11 - C22 Aromatics	681.15	249.51	681.15	416.55	37*	61	40-140	50*	25
C19 to C36 Aliphatics	321.36	147.16	321.36	270.99	46	84	40-140	59*	25
C9 to C18 Aliphatics	241.04	76.87	241.04	131.23	32*	54	40-140	52*	25
Chrysene	40.08	15.27	40.08	24.33	38*	61	40-140	46*	25
Dibenzo(a,h)anthracene	39.87	14.74	39.87	24.3	37*	61	40-140	49*	25
Fluoranthene	40.04	15.15	40.04	25.62	38*	64	40-140	51*	25
Fluorene	40.08	14.12	40.08	24.02	35*	60	40-140	52*	25
Indeno(1,2,3-cd)pyrene	40.04	15.06	40.04	25.41	38*	63	40-140	51*	25
2-Methylnaphthalene	40.04	11.91	40.04	19.76	30*	49	40-140	50*	25
Naphthalene	40.16	12.09	40.16	19.77	30*	49	40-140	48*	25
Phenanthrene	40	14.59	40	24.77	36*	62	40-140	52*	25
Pyrene	40.04	16.7	40.04	28.49	42	71	40-140	52*	25

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: MTEPH Screen Water Batch number: 191420017A

	Orthote %Rec	erphenyl LOD (ug/l)	1-chlorooctadecane %Rec LOD (ug/l)
1059980	78	2.0	55 2.0
1059981	78	2.0	53 2.0
1059982	62	2.0	46 2.0
1059983	93	2.0	89 2.0
1059984	91	2.0	88 2.0
1059985	103	2.0	85 2.0
1059986	31*	2.0	25* 2.0
1059987	101	2.0	76 2.0
1059988	103	2.0	77 2.0
1059989	87	2.0	66 2.0
1059990	88	2.0	57 2.0
1059991	94	2.0	92 2.0
1059992	112	2.0	75 2.0
1059993	101	2.0	89 2.0
1059994	102	2.0	80 2.0
Blank	104	2.0	107 2.0
LCS	220*	2.0	73 2.0

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Quality Control Summary

Client Name: EMR Environmental Reported: 08/06/2019 09:51

Group Number: 2044467

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: MTEPH Screen Water

Limits:	40-140	40-140
LCSD	288* 2.0	96 2.0
	(ug/l)	%Rec LOD (ug/l)
	Orthoterphenyl %Rec I OD	1-chlorooctadecane %Rec I OD
Batch numbe	er: 191420017A	

Analysis Name: MA-VPH Water DOD Batch number: 19142B08A

Daton number		000/1		
		toluene-P		toluene-F
	%Rec	LOD	%Rec	LOD
		(ug/l)		(ug/l)
1059979	102	3.00	103	3.00
1059980	394*	6.00	635*	6.00
1059980DL	119	60.0	136*	60.0
1059981	154*	6.00	164*	6.00
1059981DL	105	60.0	106	60.0
1059982	102	3.00	103	3.00
Blank	103	3.00	103	3.00
LCS	105	3.00	103	3.00
LCSD	104	3.00	103	3.00
Limits:	70-130	1	70-130)

Analysis Name: MA-VPH Water DOD Batch number: 19143B08A

Baton nambol		20071	
	Trifluoro %Rec	otoluene-P LOD (ug/I)	Trifluorotoluene-F %Rec LOD (ug/l)
1059983	107	3.00	115 3.00
1059984	108	3.00	117 3.00
1059987	106	3.00	115 3.00
1059988	149*	15.0	213* 15.0
1059988DL	108	75.0	120 75.0
1059989	192*	3.00	294* 3.00
1059989DL	112	15.0	130 15.0
1059991	170*	3.00	258* 3.00
1059993	190*	3.00	312* 3.00
1059994	563*	3.00	1097* 3.00
1059994DL	135*	30.0	183* 30.0
Blank	101	3.00	102 3.00
LCS	102	3.00	103 3.00
LCSD	100	3.00	101 3.00

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

(3) The surrogate spike amount was less than the LOD.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

REVISED

Quality Control Summary

Client Name: EMR Environmental Reported: 08/06/2019 09:51

Group Number: 2044467

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: MA-VPH Water DOD Batch number: 19143B08A

Limits: 70-130 70-130

Analysis Name: MA-VPH Water DOD Batch number: 19148B08A

Duton number	. 10140	DOON		
		otoluene-P LOD (ug/I)	Trifluoro %Rec	otoluene-F LOD (ug/I)
1059985	96	3.00	102	3.00
1059986	96	3.00	102	3.00
1059990	96	3.00	103	3.00
1059992	95	3.00	103	3.00
Blank	97	3.00	104	3.00
LCS	98	3.00	104	3.00
LCSD	98	3.00	103	3.00
Limits:	70-13	0	70-130	0

Analysis Name: MA-EPH Water DOD Batch number: 191510004A

	1-Chlo %Rec	ro-octadecane LOD (ug/I)	Orthote %Rec	erphenyl LOD (ug/l)	2-Fluoro %Rec	obiphenyl LOD (ug/I)
1059980	61	0.0096	51	0.038	88	0.038
1059981	60	0.0019	72	0.0096	94	0.0096
1059988	45	0.0019	66	0.019	76	0.019
1059989	45	0.0019	42	0.0039	62	0.0039
1059993	44	0.0019	78	0.0019	94	0.0019
1059994	45	0.0038	55	0.038	94	0.038
Blank	61	0.0020	45	0.0020	54	0.0020
LCS	33*	0.0020	37*	0.0020	59	0.0020
LCSD	59	0.0020	63	0.0020	72	0.0020
Limits:	40-14	10	40-14	.0	40-140	0

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

(3) The surrogate spike amount was less than the LOD.

ের্ন্স Environmental Analysis Request/Chain of Custody

Curofins Lancaster Laboratories	 .	Acct. #_	441	92 _{Gr}	oup # _	204	44	67	_ Sample	e#	159	971	<u>q</u> -	94		
Client: EMRENU				Matrix	(Analy	ses	Reque	estec	d	nya kata 2015 20 Matalan da Katalan	For Lab U	se Only
Project Name/#: MAFFF- Site IE) #:		Ľ					Prese	rvatio	n an	SF #:					
Project Manager: 58f 4 Hunen ik P.O. #	:														SCR #:	
Sampler: KACKisson PWSI	D #:		Ë	Ground		s									Preserva	ation Codes
Phone #: 760 (07772158 Quote	#:					iner									H = HCI	T = Thiosulfate
State where samples were collected: MM For Complian	nce: Yes 🗌	No	sedimon ⁴	ble ES		onta									N = HNO3	B = NaOH
	ollection		Se C		er:	Total # of Containers	34	EPH							S ≍ H₂SO₄ F = Field Filtered	P ≕ H₃PO₄ O = Olher
Sample Identification Dat	e Time	Grab	Con	Water	Other:	Tot	>								Ren	narks
TB						a	\times								Frei	
MW-1 5/19	5 1004	$\left \right\rangle$		Gil		4	X	X		L					120	ver
MW-2 5/1	5 1038	\mathcal{X}		or (1	4	4	12	Ł_							10000	g/L
MW-4 50	5 1110	\geq		6W		4	X	2			<u> </u>				Ser	en
NW-5 5/1	5 1142	λ		G-W		4	X	$\left \right\rangle$								
MW-5D 5/1	51142	X		GIL	4	4	X									
mw-le s/1	<u>s ias</u>	\times		<u> </u>	₄	4	\mathbf{X}	X				_				
N.J-7 54	5 1236	X		QW		4	\mathcal{X}	K-			<u> </u>					· · · · ·
MW-8. 5/1	5 1302	X		bill)		4	X	X	<u> </u>						_	
MW-9 5/15	5 1339	\times		らい elinquished	l br	4	\times	Date	Ti	me	Receiv	od b			Date	Time
	Standard Д	Rush	ш <u></u>	1 .				5/16					·y.		Date	Time
(Rush TAT is subject to laboratory approval and s	urcharges.)			LACIL.	and day of the second se	81		<i>⊣≀</i> لا Date	<u> 15</u>	<u>_()</u> me	Receiv	ved b	2		Date	Time
Date results are needed:	/				. 63.			Balo			1.0001				Bailo	
Rush results requested by (please check): E-Mail	Pho	ne 🗌	R	elinguished	Nov:			Date		me	Receiv	/ed b	v:		Date	Time
Rush results requested by (please check): E-Mail X E-mail Address: KADICISSON CEMKE	100,000			anndarener									,			
Filone.			R	elinguished	by:			Date	- Tii	me	Receiv	ved b	γ:		Date	Time
Data Package Options (please check if required) Type I (Validation/non-CLP) MA MCP	7			·												
			R	elinquished	l by:			Date		me	Recei	ed b	Y.		/ Date	Time
A for the second														est.	5/17/19	loze
NJ DKQP		r 🕅 E		elinquished	by Co	omme	ercial	Carrier:				and the second division of the second divisio	Contraction of the second seco		<u> </u>	<u>ک</u>
EDD Required? Yes No I If yes, form				PS	FedE	x	χ	Other			Tempe	eratur	re up	on recei	ot_0,~~),) _{°C}
EUD Required: 1es 2 10 Eurofins Lancaster Labor.		nental I							601 • 71	7-656	-2300					7045 0717

(

ŧ

چ Environmental Analysis Request/Chain of Custody

CUROFINS Lancaster Laboratories			Acct. #	419	2 Gro	oup #	2	MY	1467) s	ample # _	050	197	29	94								
Client: FMR FMU			•		Mațrix					A	nalyse	s Req	ueste	∋d		For Lab U	se Only						
Project Name/#: MJAFF-	Site ID #:								Pres	erva	ation ar	nd Filt	tratio	n Co	des	SF #:							
Project Manager:	P.O. #:			Tissue	ace ind											SCR #:							
Sampler: KACKisson	PWSID #	PWSID #:			PWSID #:			PWSID #:			Ground Surface		l o									Preserva	tion Codes
Phone #:	Quote #:			ent			iner									H = HCI	T = Thiosulfate						
State where samples were collected: MT For	Compliance:	Yes 🔲	No [j l	ES Ele		onta									N = HNO₃	B = NaOH						
	Colle	ection	Grab		Potable Br NPDES	er:	Total # of Containers	しもな	1d							S = H₂SO₄ F = Field Filtered	$P = H_3 PO_4$ O = Other						
Sample Identification	Date	Time	Grab	Soil	Water	Other:	Tota	_	(+1							Ren	narks						
$m(\omega - 10)$	516	1402	X		CaW		4	X	K														
$M(\omega) = l(\omega)$	585	1433	X		GW	/	4	F	4														
Mu2-14	5/15	1450	λ		GW		Ц	×	Х.														
$mu_2 - 13$	4/15	1524	X		GW)	4	X	X														
MW -13	5/15	1549	\times		GW		4	${\mathcal{X}}$	$\langle $														
MW-17	5115	1622	X	·	bill?		Ц	$\mathbf{\lambda}$	X														
												_	ļ										
· · · · · · · · · · · · · · · · · · ·	-					L																	
							ļ					_	<u> </u>										
		<u> </u>											<u> </u>	<u> </u>			1 7						
Turnaround Time Requested (TAT) (please che (Rush TAT is subject to laboratory appro		idard 📿	Rush [inquished	-	$\overline{\mathbf{x}}$		Dat 5/16		Time 1530	Rec	eived	by:		Date	Time						
Date results are needed:				Re	inquished	by:			Dat	e	Time	Rec	eived	φų:		Date	Time						
Rush results requested by (please check): E-M	/lail 🗌	Pho	ne 🗌																				
E-mail Address:	· •			Re	inquished	Yex:			Dat	e	Time	Rec	eived	by:		Date	Time						
Phone:	. (\geq	<u></u>															
Data Package Options (please check if required	I)			Re	inquished	by:				e	Time	Rec	eived	by:		Date	Time						
Type I (Validation/non-CLP) 🔲 MA MCF	· 🗆									\leq													
Type III (Reduced non-CLP)			. 1	Re	inquished	by:			Dat	e	Time	Rec	eived	by.		Date	Time						
Type VI (Raw Data Only) 🛛 TX TRR	P-13											\mathcal{L}	-	Com	~	5,17,14	1						
	C Category	🗌 A oi	r 🗌 B	Rel	inquished	-				:						ipt_0,4-3;	3						
EDD Required? Yes 📉 No 🔲 If y	es, format:			UPS	3	FedE	x	\times	Other _			Tem	perat	ure up	<u>·</u> °C								

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

7045 0717

🔅 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

249332

Group Number(s): 2014467

Client: EMR Env.

Delivery Method:	ed Ex		Arrival Timestamp:	05/17/2019	10:20
-					
Number of Packages:	<u>3</u>		Number of Projects:	1	
State/Province of Origin:	MT				
	Arr	ival Con	dition Summary		
Shipping Container Sealed:		Yes	Sample IDs on COC m	natch Containers:	Yes
Custody Seal Present:		Yes	Sample Date/Times m	Yes	
Custody Seal Intact:		Yes	VOA Vial Headspace 2	≥ 6mm:	Yes
Samples Chilled:		Yes	VOA IDs (≥ 6mm):		See Below
Paperwork Enclosed:		Yes	Total Trip Blank Qty:		2
Samples Intact:		Yes	Trip Blank Type:		HCI
Missing Samples:		No	Air Quality Samples Pr	esent:	No
Extra Samples:		No			
Discrepancy in Container Qty o	on COC:	No			
VOA Vial IDs (Headspace \geq 6n	nm): MW-	-10: 1 vial			
Unpacked by Simon Nies (251	12) at 16:0	1 on 05/17	7/2019		
	ę	Samples	Chilled Details		
hermometer Types: DT =	Digital (Te	•		Temp) All Te	emperatures in °C

Cooler #	Thermometer ID	Corrected Temp	<u>Therm. Type</u>	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT131	0.4	DT	Wet	Y	Bagged	N
2	DT131	3.3	DT	Wet	Y	Bagged	N
3	DT131	1.6	DT	Wet	Y	Bagged	Ν

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL	Below Minimum Quantitation Level	mL	milliliter(s)
С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm		quivalent to millig	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis			isture content. This increases the analyte weight mple without moisture. All other results are reported on an

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

as-received basis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

🔅 eurofins

Data Qualifiers

Lancaster Laboratories Environmental

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is ND
K2	Continuing Calibration Blank is above the QC limit and the sample result is ND
K3	Initial Calibration Verification is above the QC limit and the sample result is ND
K4	Continuing Calibration Verification is above the QC limit and the sample result is ND
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

APPENDIX D

Validation Report

July 12, 2019

EMR Inc. 6418 College Blvd. Overland Park, KS 66211 ATTN: Ms. Kaitlin Adkisson Kadkisson@emr-inc.com

SUBJECT: Malmstrom AFB, Data Validation

Dear Ms. Adkisson

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 17, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #45300:

SDG # Fraction

EMR07/2044467 Volatile Petroleum Hydrocarbons, Extractable Petroleum Hydrocarbons

The data validation was performed under Level II guidelines. The analyses were validated using the following documents, as applicable to each method:

- Uniform Federal Policy Quality Assurance Project Plan for Remedial Investigation Corrective Action Plan, Malmstrom Air Force Base Petroleum Site: TU1082, TU455, TU465, TU469, and LF D-04, Malmstrom Air Force Base, Montana; September 2017
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christing Rink

Christina Rink <u>crink@lab-data.com</u> Project Manager/Senior Chemist

	38 pages-EM						Attachment 1 LDC #45300 (EMR, Inc Overland Park, KS / Malmstrom AFB)																										
	ERPIMS Level	11/111				LD	C #4	1530)0 (EMF	R, In	IC	Ov	erla	nd	Par	k, K	S /	Mal	mst	ron	n AF	FB)										
_DC	SDG#	DATE REC'D	(3) DATE DUE	(MA	PH DEP PH)	(MA	PH DEP PH)	EF (MT Scr	PH EPH een)		1						1)l,	-				
Matrix	:: Water/Soil			W	S	W	s	W	S	W	S	W	s	W	S	W	S	W	S	W	s	W	S	W	s	W	s	W	S	W	S	W	s
A	EMR07/2044467	06/17/19	07/09/19	16	0	6	0	15	0																								
																															1 4 4		
																			1.	1						-							
			-					2											1														
			-																														
																			1														
												4																					
otal	J/CR			16	0	6	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Malr	nstrom AFB
-------------------------	------------

LDC Report Date: July 1, 2019

Parameters: Volatile Petroleum Hydrocarbons

Validation Level II Level II

Laboratory: Eurofins

Sample Delivery Group (SDG): EMR07/2044467

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ТВ	1059979	Water	05/15/19
MVV-1	1059980	Water	05/15/19
MVV-2	1059981	Water	05/15/19
MVV-4	1059982	Water	05/15/19
MVV-5	1059983	Water	05/15/19
MW-5D	1059984	Water	05/15/19
MVV-6	1059985	Water	05/15/19
MVV-7	1059986	Water	05/15/19
MVV-8	1059987	Water	05/15/19
MVV-9	1059988	Water	05/15/19
MVV-10	1059989	Water	05/15/19
MVV-11	1059990	Water	05/15/19
MW-14	1059991	Water	05/15/19
MW-13	1059992	Water	05/15/19
MW-15	1059993	Water	05/15/19
MW-12	1059994	Water	05/15/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Uniform Federal Policy Quality Assurance Project Plan for Remedial Investigation Corrective Action Plan, Malmstrom Air Force Base Petroleum Sites: TU1082, TU455, TU465, TU469, and LF D-04, Malmstrom Air Force Base, Montana (September 2017) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Petroleum Hydrocarbons (VPH) by MA VPH

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Compound	Concentration	Associated Samples
19148B08A-MB	05/28/19	C5-C8 Aliphatic hydrocarbons Unadjusted C5-C8 aliphatics	313 ug/L 313 ug/L	MW-6 MW-7 MW-11 MW-13

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

Sample TB was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MVV-1	Trifluorotoluene-P Trifluorotoluene-F	394 (70-130) 635 (70-130)	Methyl-tert-butyl ether	NA	_

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-2	Trifluorotoluene-P Trifluorotoluene-F	154 (70-130) 164 (70-130)	Methyl-tert-butyl ether	NA	-
MW-2	Trifluorotoluene-P Trifluorotoluene-F	154 (70-130) 164 (70-130)	Naphthalene	J (all detects)	A
MW-9	Trifluorotoluene-P Trifluorotoluene-F	149 (70-130) 213 (70-130)	Methyl-tert-butyl ether	NA	-
MW-9	Trifluorotoluene-P Trifluorotoluene-F	149 (70-130) 213 (70-130)	Naphthalene	J (all detects)	A
MW-10	Trifluorotoluene-P Trifluorotoluene-F	192 (70-130) 294 (70-130)	Methyl-tert-butyl ether	NA	-
MW-10	Trifluorotoluene-P Trifluorotoluene-F	192 (70-130) 294 (70-130)	Naphthalene Toluene o-Xylene m,p-Xylene	J (all detects) J (all detects) J (all detects) J (all detects)	A
MW-14	Trifluorotoluene-P Trifluorotoluene-F	170 (70-130) 258 (70-130)	All compounds	J (all detects)	Р
MW-15	Trifluorotoluene-P Trifluorotoluene-F	190 (70-130) 312 (70-130)	All compounds	J (all detects)	Р
MW-12	Trifluorotoluene-P Trifluorotoluene-F	563 (70-130) 1097 (70-130)	Methyl-tert-butyl ether	NA	-
MW-12	Trifluorotoluene-P Trifluorotoluene-F	563 (70-130) 1097 (70-130)	Toluene	J (all detects)	A
MVV-1	Trifluorotoluene-F	136 (70-130)	Ethylbenzene Naphthalene Toluene o-Xylene m,p-Xylene C5-C8 Aliphatic hydrocarbons Unadjusted C5-C8 aliphatics C9-C10 Aromatic hydrocarbons C9-C12 Aliphatic hydrocarbons Unadjusted C9-C12 aliphatics	J (all detects) J (all detects)	A
MW-12	Trifluorotoluene-P Trifluorotoluene-F	135 (70-130) 183 (70-130)	Ethylbenzene Naphthalene o-Xylene m.p-Xylene C5-C8 Aliphatic hydrocarbons Unadjusted C5-C8 aliphatics C9-C10 Aromatic hydrocarbons C9-C12 Aliphatic hydrocarbons Unadjusted C9-C12 aliphatics	J (all detects) J (all detects)	A

.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
19143B08A-LCS/D (MW-5 MW-5D MW-8 MW-9 MW-10 MW-10 MW-14 MW-15 MW-12)	C9-C12 aliphatic hydrocarbons	66 (70-130)	65 (70-130)	J (all detects) UJ (all non-detects)	Ρ

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-5 and MW-5D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)				
Compound	MW-1R	MW-1RD	RPD (Limits)	Flag	A or P
C5-C8 Aliphatic hydrocarbons	117	109	7 (≤20)	-	-
Unadjusted C5-C8 aliphatics	120	114	5 (≤20)	-	-
C9-C10 Aromatic hydrocarbons	76.2	85.7	12 (≤20)	-	-
C9-C12 Aliphatic hydrocarbons	56.5	62.1	9 (≤20)	-	-
Unadjusted C9-C12 aliphatics	158	177	11 (≤20)	-	-
Ethylbenzene	4.39	4.88	11 (≤20)	-	× -
Toluene	3.03	3.43	12 (≤20)	-	-
o-Xylene	5.27	6.08	14 (≤20)	-	-

	Concentration (ug/L)				
Compound	MW-1R	MW-1RD	RPD (Limits)	Flag	A or P
m,p-Xylene	15.2	17.7	15 (≤20)	-	-
Benzene	4.00U	2.20	58 (≤20)	NQ	-

NQ = One or both results were less than the limit of quantitation (LOQ), therefore no data were qualified.

X. Compound Quantitation

Raw data were not reviewed for Level II validation.

XI. Target Compound Identifications

Raw data were not reviewed for Level II validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to surrogate %R and LCS/LCSD %R, data were qualified as estimated in ten samples.

No results were rejected in this SDG.

Malmstrom AFB Volatile Petroleum Hydrocarbons - Data Qualification Summary - SDG EMR07/2044467

Sample	Compound	Flag	A or P	Reason
MW-2 MW-9	Naphthalene	J (all detects)	А	Surrogates (%R)
MW-10	Naphthalene Toluene o-Xylene m,p-Xylene	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	A	Surrogates (%R)
MW-14 MW-15	All compounds	J (all detects)	Ρ	Surrogates (%R)
MW-12	Toluene Ethylbenzene Naphthalene o-Xylene m,p-Xylene C5-C8 Aliphatic hydrocarbons Unadjusted C5-C8 aliphatics C9-C10 Aromatic hydrocarbons C9-C12 Aliphatic hydrocarbons Unadjusted C9-C12 aliphatics	J (all detects) J (all detects)	A	Surrogates (%R)
MW-1	Ethylbenzene Naphthalene Toluene o-Xylene m,p-Xylene C5-C8 Aliphatic hydrocarbons Unadjusted C5-C8 aliphatics C9-C10 Aromatic hydrocarbons C9-C12 Aliphatic hydrocarbons Unadjusted C9-C12 aliphatics	J (all detects) J (all detects)	A	Surrogates (%R)
MW-5 MW-5D MW-8 MW-9 MW-10 MW-10 MW-14 MW-15 MW-12	C9-C12 aliphatic hydrocarbons	J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (%R)

Malmstrom AFB Volatile Petroleum Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG EMR07/2044467

No Sample Data Qualified in this SDG

Malmstrom AFB Volatile Petroleum Hydrocarbons - Field Blank Data Qualification Summary - SDG EMR07/2044467

No Sample Data Qualified in this SDG

,

VALIDATION COMPLETENESS WORKSHEET Level II

LDC #: <u>45300A7</u> SDG #: <u>EMR07/2044467</u> Laboratory: <u>Eurofins</u>

Date:<u>06/28/19</u> Page:<u>l</u>of<u>2</u> Reviewer:<u>C7</u> 2nd Reviewer:

METHOD: GC Volatile Petroleum Hydrocarbons (MA VPH)

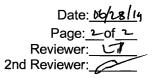
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
Ш.	Continuing calibration	N	
IV.	Laboratory Blanks	SW	
V.	Field blanks	ND	TB = 1
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N,	
VIII.	Laboratory control samples	SW	LCS/D
IX.	Field duplicates	SW	0=5+6
Х.	Compound quantitation RL/LOQ/LODs	5111 N	
XI.	Target compound identification	Ν	
XII.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

FB = Field blank


etected D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 '	ТВ	1059979	Water	05/15/19
2.	MW-1	1059980	Water	05/15/19
3 ·	MW-2	1059981	Water	05/15/19
4 ·	MW-4	1059982	Water	05/15/19
5 ·	MW-5	1059983	Water	05/15/19
6 '	MW-5D	1059984	Water	05/15/19
7 ·	MW-6	1059985	Water	05/15/19
8.	MW-7	1059986	Water	05/15/19
9 ·	MW-8	1059987	Water	05/15/19
10 ·	MW-9	1059988	Water	05/15/19
11 •	MW-10	1059989	Water	05/15/19
12 •	MW-11	1059990	Water	05/15/19
13 ·	MW-14	1059991	Water	05/15/19
14 .	MW-13	1059992	Water	05/15/19
15 [•]	MW-15	1059993	Water	05/15/19
16 ·	MW-12	1059994	Water	05/15/19
17				

ALIDATION COMPLETENESS WORKS	IEET
------------------------------	------

LDC #: <u>45300A7</u> **V/** SDG #: <u>EMR07/2044467</u> Laboratory: <u>Eurofins</u>

Level II

METHOD: GC Volatile Petroleum Hydrocarbons (MA VPH)

18	 	·····	
19	 ·		
Notes:			
1 19142B08A 2 19143B08A 319148B08A			
2 19143B08A			
319148B08A			

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL.) Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. Iodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: _____ GC ____ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Yh N N/A</u> Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

<u>Y/N N/A</u> Was a method blank performed with each extraction batch?

V N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Level IV/D Only

Y N N/A (Gasoline and aromatics only)Was a method blank analyzed with each 24 hour batch?

<u>Y N N/A</u>	Was a method blank analyzed for each analytical / extraction batch of ≤ 20 samples?
	- I mark

Blank extraction date: Conc. units:_ <u>W_</u> /L	– Blank a	nalysis date: <u>05/28/</u> 19	Associated samples:_	T, 0,12,1	<u>7 (ND)</u>
Compound	Blank ID		Sample Identification		

Compound	Blank ID	Sample Identification							
	19148B08A-MI	ah l							
CS-C8 Aliphatic Hydrocarbons Unadjusted CS-C8 Aliphatics	313								
Unadjusted (5-C8 Aliphatics	313								
					_				

Blank extraction date:_____ Blank analysis date:_____

Associated samples:

Page: <u>(</u>of Reviewer: L-

2nd Reviewer:

7 4 12 14 (10)

Conc. units:

Compound	Blank ID	Sample Identification								

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 4530047

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:	L_of <u>L</u>
Reviewer:	17
2nd Reviewer:_	9-

METHOD: <u>GC</u> HPLC Are surrogates required by the method? Yes or No_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $(\mathcal{P} N N/A)$ Were surrogates spiked into all samples and blanks?

Y (N) N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID	Detec Colu		Surrogate Compound		%R (Limits)			Q	ualifications
	2 (N))		TI	Trifluorotolvene-P 394 (70-130))-130)	J/A Dets LL only			
				-1		635 (J J
	B .					()	(10) (24)	
	3 (NO 1207)			-P		154 ()	JA	Dets LL and MMM
				-F		164 ()		1/
				-		IV (
+	10 (NO 124)			-P	-	149 (, , , , , , , , , , , , , , , , , , ,	Tar	uts il al MMM
+				-F		2 3 ()	0/4-1	
-+										
	11 (NOPDET)		<u> </u>	-P		192 (+A	Offsty when ac and
				-F		294 (3/7	DUS U., MMM, CC, SSS, PML only
_										KIGL ON US
						170 ()		2 00/-
\rightarrow	13 (ND/DU)			P)	<u> </u>	° pets
-+				<u> </u>		258 ()		
_						()		
	15 (MD/Der)			-P		190 ()		
						312 ()	\checkmark	
_						()		Lets LL me ce chi
	16 (ND/247)			-0		563 ()	J/A-	lets IL al ce ini.
				<u> </u>	-F 1097 (/)			\downarrow		
						()		
	Surrogate Compound		Surrogate	e Compound		Surrogate Compound		Surrogate Compoun	d	Surrogate Compound
4	Chlorobenzene (CBZ)	G	Octac	cosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzen	e Y	Tetrachloro-m- xylene
3	4-Bromofluorobenzene (BFB)	Н	Ortho-	Terphenyl	N	Terphenyi-D14	Т	3,4-Dinitrotoluene	z	1,2-Dinitrobenzene
;	a,a,a-Trifluorotoluene	I	Fluorobe	nzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin		
	Bromochiorobenene		n-Tria	acontane	Р	1-methvinaphthalene	V	Tri-n-propyltin		
4	1,4-Dichlorobutane	к	Hexa	acosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate		<u> </u>
:	1.4-Difluorobenzene (DFB)		Bromo	obenzene	R	4-Nitrophenol	X	Triphenyl Phosphate		

* IL (ND), the rest (Ref)

$LDO \pi$	LDC	#:	45	300	A	7
-----------	-----	----	----	-----	---	---

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page: 2_of_2 Reviewer: 47 2nd Reviewer: 67

	ites spike	questions a ed into all s	samples and blar	iks?	cable questions are identified	d as "N	//A".		
Sample ID			Surrogate Compound		%R (Limits)			Qu	alifications
2 (pet)			Trifluoroitoluere	-1=	136 (70	130) J/A-Dets	only:	EE, MMM, CC, SSS
					<u> </u>	1) FKP-, 05-	c8 Alips	when Hydrocarbons,
					() Unadjuste	el (5-1	C& Al: phontres thydrocartes
					() CA-CID Arom) Unadjuster	ntic Hya a ca-ci	thocur ture , 09-012 Aliphatic 2 Aliphatics
					()		
16 (Det)			1		135 () JA Der.	rany!	EE, MMM, SSS, PPR
		`	-F	-	18 () 05-08 A1:pl	Mic'H	hydrocarbons, Unadjustee
					() 55-68 Hipl	Attas.	ca-cio Anomantiz Hydroca
					() [9-02 Ali	phatric b	ty duo carbons, Unadjusted
					() COT-CI2 A1:	phontics	
					()			
					()			
					()			
					()			
					()			
				()					
				()					
					()			
					()		
					()		
Surrogate Compound		Surrog	gate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Chlorobenzene (CBZ) G Octacosane		м	Benzo(e)Pyrene	s	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene		
4-Bromofluorobenzene (BFB) H Ortho-Terphenyl		N	Terphenyi-D14	т	3,4-Dinitrotoluene	z	1,2-Dinitrobenzene		
a,a,a-Trifluorotoluene		Fluor	obenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin		
Bromochlorobenene	J			Р	1-methylnaphthalene	v	Tri-n-propyltin	_	
1,4-Dichlorobutane 1.4-Difluorobenzene (DFB)	ĸ		Hexacosane romobenzene	Q R	Dichlorophenyl Acetic Acid (DCAA)	W	Tributyl Phosphate		
	Sample ID 2. (Oet) 	Sample Detec ID Colu 2. (Det) 	Sample ID Detector/ Column 2_(Oet)	Sample ID Detector/ Column Surrogate Compound 2. (Oet) Trifluwotalutere 10 -1 <td>Sample ID Detector/ Column Surrogate Compound 2. (Oet) Trifluw votal Were 1 1 1</td> <td>Sample ID Detector/ Column Surrogate Compound %R (Limits) 2_(0et) friftluwotplutre [3 @ (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((</td> <td>Sample ID Detector/ Column Surrogate Compound %R (Limits) 2. (Qet) Trifluwotal Were T 13.6 (7-0- ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((</td> <td>Sample ID Detector/ Column Surrogate Compound %R (Limits) 2. (Qet) Trifluwodplutre TF 13.6 (170-130) J/A Q4ts (1) PEEF-JSF (1) PEEF-JSF (1) PEEF-JSF (1) PEEF-JSF (1) Unedjost (1) PEEF-JSF (1) Unedjost (1) Unedjost (1) (1) Unedjost (1) Unedjost (1) (1) (1) Unedjost (1) Unedjost (1) (1) (1) (1) (1) Unedjost (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td> <td>Sample ID Detector/ Column Surrogate Compound %R (Limits) Qu 2. (Qet) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) (1) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) (1) (1) Infiluworbiluere IF (1) 9 (Qet) (1) (1) (1) 10 10 10 (Qet) (1) (1) (1) 11 11 0 10 (Qet) (1) (1) (1) 11 0 11 0 11 (Qet) (1) (1) (1) 11 0 11 0 11 0 11 11 11 11 11 11 11 11 11 11 11 11 11</td>	Sample ID Detector/ Column Surrogate Compound 2. (Oet) Trifluw votal Were 1 1 1	Sample ID Detector/ Column Surrogate Compound %R (Limits) 2_(0et) friftluwotplutre [3 @ (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Sample ID Detector/ Column Surrogate Compound %R (Limits) 2. (Qet) Trifluwotal Were T 13.6 (7-0- ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Sample ID Detector/ Column Surrogate Compound %R (Limits) 2. (Qet) Trifluwodplutre TF 13.6 (170-130) J/A Q4ts (1) PEEF-JSF (1) PEEF-JSF (1) PEEF-JSF (1) PEEF-JSF (1) Unedjost (1) PEEF-JSF (1) Unedjost (1) Unedjost (1) (1) Unedjost (1) Unedjost (1) (1) (1) Unedjost (1) Unedjost (1) (1) (1) (1) (1) Unedjost (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Sample ID Detector/ Column Surrogate Compound %R (Limits) Qu 2. (Qet) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) (1) Infiluworbiluere IF 13 (4 (2-1)20) J/A Detts only : (1) 9 (Qet) (1) (1) Infiluworbiluere IF (1) 9 (Qet) (1) (1) (1) 10 10 10 (Qet) (1) (1) (1) 11 11 0 10 (Qet) (1) (1) (1) 11 0 11 0 11 (Qet) (1) (1) (1) 11 0 11 0 11 0 11 11 11 11 11 11 11 11 11 11 11 11 11

LDC #: 45300 A7

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: <u>{</u> of <u>}</u>
Reviewer: <u>_</u>
2nd Reviewer:

METHOD: GC_HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\underline{\hat{N}NA}$ Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? $\underline{Y(N)NA}$ Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

Y N N/A Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	19143BOBA-LTG/D	C9-C12 Aliphatic Hydrocarbons	66 (70-130)	65 (70-130)	()	5, 6, 10, 11, 13, 15, 16 (24)	JNJ1P
		Hydrocarbons	()	()	()	5, b, 10, 11, 13, 15, 16 (20) 9 (ND)	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()_	()		
			()	()	()		
			()	()	()		·
			()	()	()		
			()	()	()		
-			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: <u>l_of l</u> Reviewer: <u>L7</u> 2nd Reviewer: _____

METHOD: GC Volatile Petroleum Hydrocarbons (MADEP VPH)

	Concentra			
Compound	4	5	RPD (< 20)	Qual (< LOQ)
C5-C8 Aliphatic Hydrocarbons	117	109	7	
Unadjusted C5-C8 Aliphatics	120	114	5	
C9-C10 Aromatic Hydrocarbons	76.2	85.7	12	
C9-C12 Aliphatic Hydrocarbons	56.5	62.1	9	
Unadjusted C9-C12 Aliphatics	158	177	11	
EE	4.39	4.88	11	
сс	3.03	3.43	12	
SSS	5.27	6.08	14	
RRR	15.2	17.7	15	
V	4.00U	2.20	58	NQ

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site	Name:	Malmstrom AFB

LDC Report Date: July 1, 2019

Parameters:Extractable Petroleum Hydrocarbons

Validation Level II Level II

Laboratory: Eurofins

Sample Delivery Group (SDG): EMR07/2044467

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-1	1059980	Water	05/15/19
MW-2	1059981	Water	05/15/19
MW-9	1059988	Water	05/15/19
MW-10	1059989	Water	05/15/19
MW-15	1059993	Water	05/15/19
MW-12	1059994	Water	05/15/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Uniform Federal Policy Quality Assurance Project Plan for Remedial Investigation Corrective Action Plan, Malmstrom Air Force Base Petroleum Sites: TU1082, TU455, TU465, TU469, and LF D-04, Malmstrom Air Force Base, Montana (September 2017) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Extractable Petroleum Hydrocarbons by MA EPH

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
191510004A-LCS/D (MW-1 MW-9 MW-10 MW-15 MW-12)	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Unadjusted C11-C22 aromatics C9-C18 aliphatics Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene	$\begin{array}{c} 33 \ (40-140) \\ 34 \ (40-140) \\ 37 \ (40-140) \\ 38 \ (40-140) \\ 39 \ (40-140) \\ 39 \ (40-140) \\ 37 \ (40-140) \\ 37 \ (40-140) \\ 32 \ (40-140) \\ 38 \ (40-140) \\ 38 \ (40-140) \\ 38 \ (40-140) \\ 35 \ (40-140) \\ 38 \ (40-140) \\ 30 \ (4$		J (all detects) UJ (all non-detects)	Ρ

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
191510004A-LCS/D (MW-1 MW-2 MW-9 MW-10 MW-15 MW-12)	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Unadjusted C11-C22 aromatics C19-C36 aliphatics C9-C18 aliphatics Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	$52 (\leq 25) \\ 51 (\leq 25) \\ 51 (\leq 25) \\ 51 (\leq 25) \\ 52 (\leq 25) \\ 52 (\leq 25) \\ 51 (\leq 25) \\ 50 (\leq 25) \\ 50 (\leq 25) \\ 59 (\leq 25) \\ 59 (\leq 25) \\ 52 (\leq 25) \\ 46 (\leq 25) \\ 51 (\leq 25) \\ 51 (\leq 25) \\ 51 (\leq 25) \\ 51 (\leq 25) \\ 50 (\leq 25) \\ 51 (\leq 25) \\ 52 ($	J (all detects) ŲJ (all non-detects)	Ρ

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Level II validation.

XI. Target Compound Identifications

Raw data were not reviewed for Level II validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to LCS/LCSD %R and RPD, data were qualified as estimated in six samples.

No results were rejected in this SDG.

Malmstrom AFB Extractable Petroleum Hydrocarbons - Data Qualification Summary - SDG EMR07/2044467

Sample	Compound	Flag	A or P	Reason
MW-1 MW-2 MW-9 MW-10 MW-15 MW-12	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Unadjusted C11-C22 aromatics C9-C18 aliphatics Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene	J (all detects) UJ (all non-detects)	P	Laboratory control samples (%R)
MW-1 MW-2 MW-9 MW-10 MW-15 MW-12	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Unadjusted C11-C22 aromatics C19-C36 aliphatics C9-C18 aliphatics Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (RPD)

Malmstrom AFB Extractable Petroleum Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG EMR07/2044467

No Sample Data Qualified in this SDG

Malmstrom AFB Extractable Petroleum Hydrocarbons - Field Blank Data Qualification Summary -SDG EMR07/2044467

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>45300A8a</u> SDG #: <u>EMR07/2044467</u> Laboratory: <u>Eurofins</u>

Level II

Date: <u>06/28/1</u> 9
Page: <u>l</u> of <u>l</u>
Reviewer: LT
2nd Reviewer:

METHOD: GC Extractable Petroleum Hydrocarbons (MA EPH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
п.	Initial calibration/ICV	N/N	
- 111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	A_	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	SN	LC8/D
IX.	Field duplicates	N	
<u> </u>	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 2 · 3 · 5 · 6 · 7 8 9 10	MW-1	1059980	Water	05/15/19
2 ·	MW-2	1059981	Water	05/15/19
3 ·	MW-9	1059988	Water	05/15/19
4 ·	MW-10	1059989	Water	05/15/19
5 ·	MW-15	1059993	Water	05/15/19
6 -	MW-12	1059994	Water	05/15/19
7				
8				
9				
Mate				

Notes:

1	191510004A				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLD. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S) Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV) Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	(YY)Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ethe
X. Hexachlorocyclopentadiene	ZZ Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD) Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 45300 484

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	l_of_1_
Reviewer:	67
2nd Reviewer	\sim
Zha Reviewer	

METHOD: ____GC ___ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>YN N/A</u> Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Y(N)N/A

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

<u>Y N N/A</u> Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	191510004ALOS/) SEE	MORICSH	EET AT	TACHED)		
	-		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	(
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	 	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()		

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-6756 + www.Eurolinst/S.com/LancLabsEnv

Analysis Report

Quality Control Summary

Client Name: EMR Environmental Reported: 06/13/2019 20:08

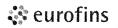
Group Number: 2044467

AN ZRS + PPDS J/UJ/P H6 (ND/Det)

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Methyl t-butyl ether	50.03	48.19	50.03	48.08	96	96	70-130	0	25
Naphthalene	50.16	45.36	50.16	45.95	90	92	70-130	1	25
Toluene	50.3	49.68	50.3	49.14	99	98	70-130	1	25
o-Xylene	50	47.57	50	47.35	95	95	70-130	0	25
m,p-Xylenes	100.43	96.62	100.43	96.23	96	96	70-130	0	25
Batch number: 19143B08A	Sample number	(s): 1059983-1	059984,1059987-1	059989,105	9991,10599	93-105999	4		
Benzene	50.19	38.66	50.19	38.57	77	77	70-130	0	25
C5-C8 Aliphatic Hydrocarbons	150.78	123.05	150.78	121.5	82	81	70-130	1	25
Unadjusted C5-C8 Aliphatics	301.31	238.08	301.31	236.19	79	78	70-130	1	25
C9-C10 Aromatic Hydrocarbons	50.07	38.56	50.07	38.39	77	77	70-130	0	25
C9-C12 Aliphatic Hydrocarbons	150.53	99.54	150.53	98.09	66*	65*	70-130	1	25
Unadjusted C9-C12 Aliphatics	401.21	289.46	401.21	287.64	72	72	70-130	1	25
Ethylbenzene	50.18	38.49	50.18	38.38	77	76	70-130	0	25
Methyl t-butyl ether	50.03	37.94	50.03	37.57	76	75	70-130	1	25
Naphthalene	50.16	35.47	50,16	35.47	71	71	70-130	0	25
Toluene	50.3	38.43	50.3	38.55	76	77	70-130	0	25
o-Xylene	50	37.28	50	37.1	75	74	70-130	Ō	25
m,p-Xylenes	100.43	75.59	100.43	75.67	75	75	70-130	Ō	25
Batch number: 19148B08A	Sample number	(s) [,] 1059985-1	059986,1059990,1	059992					
Benzene	50.19	46.29	50.19	46.47	92	93	70-130	0	25
C5-C8 Aliphatic Hydrocarbons	150.78	159.81	150.78	160.8	106	107	70-130	ĭ 1	25
Unadjusted C5-C8 Aliphatics	301.31	300.45	301.31	302.14	100	100	70-130	1	25
C9-C10 Aromatic Hydrocarbons	50.07	45.95	50.07	46.04	92	92	70-130	Ö	25
C9-C12 Aliphatic Hydrocarbons	150.53	139.68	150.53	140.96	93	94	70-130	1	25
Unadjusted C9-C12 Aliphatics	401.21	365.63	401.21	368.49	91	92	70-130	1	25
Ethvibenzene	50.18	45.81	50.18	46.08	91	92	70-130	1	25
Methyl t-butyl ether	50.03	48.13	50.03	48.3	96	97	70-130	0	25
Naphthalene	50.03	51.4	50.05	51.74	102	103	70-130	1	25 25
Toluene	50.3	46.23	50.3	46.57	92	93	70-130	1	25
o-Xylene	50	40.23	50.3	40.57	92 88	93 89	70-130	1	25 25
m,p-Xylenes	100.43	90.07	100.43	90.94	90	91	70-130	1	25
Batch number: 191510004A	Comple number				0002 40500	0.4			
 Acenaphthene 	40.08	(s): 1059980-1 13.23	059981,1059988-1 40.08	22.42	33*	94 56	40-140	52*	25
•	40.08	13.23			33" 34*	56 57	40-140 40-140	52″ 51*	25 25
Acenaphthylene			40.08	22.75	34^ 37*			51* 51*	
Anthracene	40.12	14.77	40.12	24.83		62	40-140	51^ 51*	25
- Benzo(a)anthracene	40.16	15.21	40.16	25.52	38*	64 50	40-140		25
Benzo(a)pyrene	40.12	14.3	40.12	23.59	36*	59	40-140	49*	25
Benzo(b)fluoranthene	40.12	15.45	40.12	26.18	39*	65	40-140	52*	25
Benzo(g,h,i)perylene	40.04	15.08	40.04	25.28	38*	63	40-140	51*	25
Henzo(k)fluoranthene	40.08	14.72	40.08	24.21	37*	60	40-140	49*	25
Unadjusted C11 - C22 Aromatics	681.15	249.51	681.15	416.55	37*	61	40-140	50*	25
C19 to C36 Aliphatics	321.36	147.16	321.36	270.99	46	84	40-140	59*	25

*- Outside of specification


**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

(3) The surrogate spike amount was less than the LOD.

Page 30 of 38

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-6766 + www.EurofineUS.com/LancLabsEnv

Quality Control Summary

Client Name: EMR Environmental Reported: 06/13/2019 20:08 Group Number: 2044467

LCS/LCSD (continued)

	Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	C9 to C18 Aliphatics	241.04	76.87	241.04	131.23	32*	54	40-140	52*	25
DDD	Chrysene	40.08	15.27	40.08	24.33	38*	61	40-140	46*	25
444	Dibenzo(a,h)anthracene	39.87	14.74	39.87	24.3	37*	61	40-140	49*	25
N.	Fluoranthene	40.04	15.15	40.04	25.62	38*	64	40-140	51*	25
NN.	Fluorene	40.08	14.12	40.08	24.02	35*	60	40-140	52*	25
555	Indeno(1,2,3-cd)pyrene	40.04	15.06	40.04	25.41	38*	63	40-140	51*	25
W	2-Methylnaphthalene	40.04	11.91	40.04	19.76	30*	49	40-140	50*	25
Ċ,	Naphthalene	40.16	12.09	40.16	19.77	30*	49	40-140	48*	25
NN.	Phenanthrene	40	14.59	40	24.77	36*	62	40-140	52*	25
王王	Pyrene	40.04	16.7	40.04	28.49	42	71	40-140	52*	25

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: MTEPH Screen Water Batch number: 191420017A

Batch number	: 19142	0017A		
		erphenyl		rooctadecane
	%Rec	LOD	%Rec	LOD
		(ug/l)		(ug/l)
1059980	78	2.0	55	2.0
1059981	78	2.0	53	2.0
1059982	62	2.0	46	2.0
1059983	93	2.0	89	2.0
1059984	91	2.0	88	2.0
1059985	103	2.0	85	2.0
1059986	31*	2.0	25*	2.0
1059987	101	2.0	76	2.0
1059988	103	2.0	77	2.0
1059989	87	2.0	66	2.0
1059990	88	2.0	57	2.0
1059991	94	2.0	92	2.0
1059992	112	2.0	75	2.0
1059993	101	2.0	89	2.0
1059994	102	2.0	80	2.0
Blank	104	2.0	107	2.0
LCS	220*	2.0	73	2.0
LCSD	288*	2.0	96	2.0
Limits:	40-14	0	40-14	40

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

(3) The surrogate spike amount was less than the LOD.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Malmstrom AFB
--------------------	---------------

LDC Report Date: July 1, 2019

Parameters: Extractable Petroleum Hydrocarbons

Validation Level II Level II

Laboratory: Eurofins

Sample Delivery Group (SDG): EMR07/2044467

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-1	1059980	Water	05/15/19
MVV-2	1059981	Water	05/15/19
MVV-4	1059982	Water	05/15/19
MVV-5	1059983	Water	05/15/19
MW-5D	1059984	Water	05/15/19
MVV-6	1059985	Water	05/15/19
MVV-7	1059986	Water	05/15/19
MVV-8	1059987	Water	05/15/19
MVV-9	1059988	Water	05/15/19
MVV-10	1059989	Water	05/15/19
MVV-11	1059990	Water	05/15/19
MW-14	1059991	Water	05/15/19
MW-13	1059992	Water	05/15/19
MW-15	1059993	Water	05/15/19
MW-12	1059994	Water	05/15/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Uniform Federal Policy Quality Assurance Project Plan for Remedial Investigation Corrective Action Plan, Malmstrom Air Force Base Petroleum Sites: TU1082, TU455, TU465, TU469, and LF D-04, Malmstrom Air Force Base, Montana (September 2017) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Extractable Petroleum Hydrocarbons by MTEPH Screen

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-7	Ortho-terphenyl 1-chloro-octadecane	31 (40-140) 25 (40-140)	MTEPH screen water	J (all detects) UJ (all non-detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-5 and MW-5D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)					
Compound	MW-5	MW-5D	RPD (Limits)	Flag	A or P	
MTEPH screen water	460	430	7 (≤20)	-	-	

X. Compound Quantitation

All compound quantitations met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
MW-1 MW-2 MW-9 MW-10 MW-12	MTEPH screen water	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A

Raw data were not reviewed for Level II validation.

XI. Target Compound Identifications

Raw data were not reviewed for Level II validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to surrogate %R and results exceeding calibration range, data were qualified as estimated in six samples.

No results were rejected in this SDG.

Malmstrom AFB Extractable Petroleum Hydrocarbons - Data Qualification Summary - SDG EMR07/2044467

Sample	Compound	Flag	A or P	Reason
MW-7	MTEPH screen water	J (all detects) UJ (all non-detects)	Р	Surrogates (%R)
MW-1 MW-2 MW-9 MW-10 MW-12	MTEPH screen water	J (all detects)	A	Compound quantitation (exceeded range)

Malmstrom AFB

Extractable Petroleum Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG EMR07/2044467

No Sample Data Qualified in this SDG

Malmstrom AFB Extractable Petroleum Hydrocarbons - Field Blank Data Qualification Summary -SDG EMR07/2044467

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 45300A8b SDG #: EMR07/2044467 Laboratory: Eurofins

Level II

Date: 0428/19
Page: <u>l</u> of2_
Reviewer: <u>1</u>
2nd Reviewer:

METHOD: GC Extractable Petroleum Hydrocarbons (MTEPH Screen)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
П.	Initial calibration/ICV	N/N	
ш.	Continuing calibration	<u>N</u>	
IV.	Laboratory Blanks	A	
<u>v.</u>	Field blanks	N	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LCS/D
IX.	Field duplicates	8W	D = 4+5
<u> </u>	Compound quantitation RL/LOQ/LODs	SW	
XI.	Target compound identification	N	
XII.	Overall assessment of data	A	

Note:

Б

N = Not provided/applicable

A = Acceptable

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

7

SW = See worksheet

Client ID	Lab ID	Matrix	Date
1 • MW-1	1059980	Water	05/15/19
2 · MW-2	1059981	Water	05/15/19
3 - MW-4	1059982	Water	05/15/19
4 • MW-5	1059983	Water	05/15/19
5 MW-5D	1059984	Water	05/15/19
6 · MW-6	1059985	Water	05/15/19
7 ~ MW-7	1059986	Water	05/15/19
8 ` MW-8	1059987	Water	05/15/19
9 * MW-9	1059988	Water	05/15/19
10 · MW-10	1059989	Water	05/15/19
11 · MW-11	1059990	Water	05/15/19
12 MW-14	1059991	Water	05/15/19
13 MW-13	1059992	Water	05/15/19
14 [•] MW-15	1059993	Water	05/15/19
15 MW-12	1059994	Water	05/15/19
16			
17			

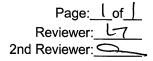
LDC #: 45300A8b

SDG #: EMR07/2044467 Laboratory: Eurofins

18		 	 			
Note	es:	 				
1	191426017A					

METHOD: GC Extractable Petroleum Hydrocarbons (MTEPH Screen)

VALIDATION COMPLETENESS WORKSHEET


Level II

Date: 06/28/19 Page: 2of 2 Reviewer: 2nd Reviewer

L:\EMR\Maimstrom AFB\45300A8bW.wpd

LDC #: 45300A81

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

METHOD: _____GC ____HPLC

Are surrogates required by the method? Yes _____ or No_____.

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Were surrogates spiked into all samples and blanks?</u>

Y/N/N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID		Detect Colun		Surrogate Compound		%R (Limits)				Qua	alifications
	7				H		31 (41)-140)		51	UJ/AP
					1-chloro-octadeca	ne	25 (\downarrow
)			
						Ť	()			
							(,		·····	····.
							(····· /			
						-	(
							(
							()			
							(
						_)			
+							()			
						<u> </u>	()			
						+)			
						+	()			
							())			
							()			
						+	()			
╞━┿							()			
							()			
					.	+	()			
							()			
	Surrogate Compour	nd		Surrog	ate Compound		Surrogate Compound		Surrogate Co	mpound		Surrogate Compound
А	Chlorobenzene (CBZ)		ß	0	ctacosane	м	Benzo(e)Pyrene	s	1-Chloro-3-Nitro	obenzene	Y	Tetrachloro-m- xylene
в	4-Bromofluorobenzene (B	FB) (н)	Ort	ho-Terphenyi	N	Terphenyl-D14	Т	3,4-Dinitroto	luene	Z	1,2-Dinitrobenzene
c	a,a,a-Trifluorotoluene		ĭ	Fluore	obenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentylt	tin		
	Bromochlorobenene		J		Triacontane	Р	1-methylnaphthalene	<u> </u>	Tri-n-propy			
E	1,4-Dichlorobutane		ĸ		exacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	W Tributyl Phosphate				
F	1.4-Difluorobenzene (DF	B)	<u>L (</u>	Bro	omobenzene	R	4-Nitrophenol	<u> </u>	Triphenyl Pho	sphate		

LDC#:_45300A8b_

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>۱</u> of ۱ Reviewer: <u>۲</u> 2nd Reviewer:

METHOD: GC Extractable Petroleum Hydrocarbons (MTEPH Screen)

	Concentra			
Compound	4	5	RPD (< 20)	
MTEPH Screen Water	460	430	7	

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: <u></u> of <u></u>
Reviewer: <u>17</u>
2nd Reviewer:

METHOD: ____GC ___ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

<u>Y N N/A</u> Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

#	Compound Name	Finding	Associated Samples	Qualifications		
	MTPH MITTERH Screen W	later xid cel range		JIA Dets		
			2			
			9			
			10			
		V	15			

Comments: <u>See sample calculation verification worksheet for recalculations</u>